• 제목/요약/키워드: a Deep neural network

검색결과 1,951건 처리시간 0.029초

Deep learning convolutional neural network algorithms for the early detection and diagnosis of dental caries on periapical radiographs: A systematic review

  • Musri, Nabilla;Christie, Brenda;Ichwan, Solachuddin Jauhari Arief;Cahyanto, Arief
    • Imaging Science in Dentistry
    • /
    • 제51권3호
    • /
    • pp.237-242
    • /
    • 2021
  • Purpose: The aim of this study was to analyse and review deep learning convolutional neural networks for detecting and diagnosing early-stage dental caries on periapical radiographs. Materials and Methods: In order to conduct this review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines were followed. Studies published from 2015 to 2021 under the keywords(deep convolutional neural network) AND (caries), (deep learning caries) AND (convolutional neural network) AND (caries) were systematically reviewed. Results: When dental caries is improperly diagnosed, the lesion may eventually invade the enamel, dentin, and pulp tissue, leading to loss of tooth function. Rapid and precise detection and diagnosis are vital for implementing appropriate prevention and treatment of dental caries. Radiography and intraoral images are considered to play a vital role in detecting dental caries; nevertheless, studies have shown that 20% of suspicious areas are mistakenly diagnosed as dental caries using this technique; hence, diagnosis via radiography alone without an objective assessment is inaccurate. Identifying caries with a deep convolutional neural network-based detector enables the operator to distinguish changes in the location and morphological features of dental caries lesions. Deep learning algorithms have broader and more profound layers and are continually being developed, remarkably enhancing their precision in detecting and segmenting objects. Conclusion: Clinical applications of deep learning convolutional neural networks in the dental field have shown significant accuracy in detecting and diagnosing dental caries, and these models hold promise in supporting dental practitioners to improve patient outcomes.

미세먼지 농도 예측을 위한 딥러닝 알고리즘별 성능 비교 (Comparative Study of Performance of Deep Learning Algorithms in Particulate Matter Concentration Prediction)

  • 조경우;정용진;오창헌
    • 한국항행학회논문지
    • /
    • 제25권5호
    • /
    • pp.409-414
    • /
    • 2021
  • 미세먼지에 대한 심각성이 사회적으로 대두됨에 따라 대중들은 미세먼지 예보에 대한 정보의 높은 신뢰성을 요구하고 있다. 이에 따라 다양한 신경망 알고리즘을 이용하여 미세먼지 예측을 위한 연구가 활발히 진행되고 있다. 본 논문에서는 미세먼지 예측을 위해 다양한 알고리즘으로 연구되고 있는 신경망 알고리즘들 중 대표적인 알고리즘들의 예측 성능 비교를 진행하였다. 신경망 알고리즘 중 DNN(deep neural network), RNN(recurrent neural network), LSTM(long short-term memory)을 이용하였으며, 하이퍼 파라미터 탐색을 이용하여 최적의 예측 모델을 설계하였다. 각 모델의 예측 성능 비교 분석 결과, 실제 값과 예측 값의 변화 추이는 전반적으로 좋은 성능을 보였다. RMSE와 정확도를 기준으로 한 분석에서는 DNN 예측 모델이 다른 예측 모델에 비해 예측 오차에 대한 안정성을 갖는 것을 확인하였다.

Dual deep neural network-based classifiers to detect experimental seizures

  • Jang, Hyun-Jong;Cho, Kyung-Ok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.131-139
    • /
    • 2019
  • Manually reviewing electroencephalograms (EEGs) is labor-intensive and demands automated seizure detection systems. To construct an efficient and robust event detector for experimental seizures from continuous EEG monitoring, we combined spectral analysis and deep neural networks. A deep neural network was trained to discriminate periodograms of 5-sec EEG segments from annotated convulsive seizures and the pre- and post-EEG segments. To use the entire EEG for training, a second network was trained with non-seizure EEGs that were misclassified as seizures by the first network. By sequentially applying the dual deep neural networks and simple pre- and post-processing, our autodetector identified all seizure events in 4,272 h of test EEG traces, with only 6 false positive events, corresponding to 100% sensitivity and 98% positive predictive value. Moreover, with pre-processing to reduce the computational burden, scanning and classifying 8,977 h of training and test EEG datasets took only 2.28 h with a personal computer. These results demonstrate that combining a basic feature extractor with dual deep neural networks and rule-based pre- and post-processing can detect convulsive seizures with great accuracy and low computational burden, highlighting the feasibility of our automated seizure detection algorithm.

Prediction and Comparison of Electrochemical Machining on Shape Memory Alloy(SMA) using Deep Neural Network(DNN)

  • Song, Woo Jae;Choi, Seung Geon;Lee, Eun-Sang
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.276-283
    • /
    • 2019
  • Nitinol is an alloy of nickel and titanium. Nitinol is one of the shape memory alloys(SMA) that are restored to a remembered form, changing the crystal structure at a given temperature. Because of these unique features, it is used in medical devices, high precision sensors, and aerospace industries. However, the conventional method of mechanical machining for nitinol has problems of thermal and residual stress after processing. Therefore, the electrochemical machining(ECM), which does not produce residual stress and thermal deformation, has emerged as an alternative processing technique. In addition, to replace the existing experimental planning methods, this study used deep neural network(DNN), which is the basis for AI. This method was shown to be more useful than conventional method of design of experiments(RSM, Taguchi, Regression) by applying deep neural network(DNN) to electrochemical machining(ECM) and comparing root mean square errors(RMSE). Comparison with actual experimental values has shown that DNN is a more useful method than conventional method. (DOE - RSM, Taguchi, Regression). The result of the machining was accurately and efficiently predicted by applying electrochemical machining(ECM) and deep neural network(DNN) to the shape memory alloy(SMA), which is a hard-mechinability material.

심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템 (Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network)

  • 이윤호;전주현;주문갑
    • 대한임베디드공학회논문지
    • /
    • 제17권3호
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

Improvement of the Convergence Rate of Deep Learning by Using Scaling Method

  • Ho, Jiacang;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • 제6권4호
    • /
    • pp.67-72
    • /
    • 2017
  • Deep learning neural network becomes very popular nowadays due to the reason that it can learn a very complex dataset such as the image dataset. Although deep learning neural network can produce high accuracy on the image dataset, it needs a lot of time to reach the convergence stage. To solve the issue, we have proposed a scaling method to improve the neural network to achieve the convergence stage in a shorter time than the original method. From the result, we can observe that our algorithm has higher performance than the other previous work.

Deep neural network 기반 오디오 표식을 위한 데이터 증강 방법 연구 (Study on data augmentation methods for deep neural network-based audio tagging)

  • 김범준;문현기;박성욱;박영철
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.475-482
    • /
    • 2018
  • 본 논문에서는 DNN(Deep Neural Network) 기반 오디오 표식을 위한 데이터 증강 방법을 연구한다. 본 시스템에서는 오디오 신호를 멜-스펙트로그램으로 변환하여 오디오 표식을 위한 심층신경망의 입력으로 사용한다. 적은 수의 훈련 데이터를 사용하는 경우 발생하는 문제를 해결하기 위해, 타임 스트레칭, 피치 변화, 동적 영역 압축, 블록 혼합 등의 방법을 사용하여 훈련 데이터를 증강시켰다. 사용된 데이터 증강 기법의 최적 파라미터와 최적 조합을 오디오 표식 시뮬레이션을 통해 확인하였다.

딥러닝을 이용한 스마트 교육시설 공사비 분석 및 예측 - 기획·설계단계를 중심으로 - (A Study on the Analysis and Estimation of the Construction Cost by Using Deep learning in the SMART Educational Facilities - Focused on Planning and Design Stage -)

  • 정승현;권오빈;손재호
    • 교육시설 논문지
    • /
    • 제25권6호
    • /
    • pp.35-44
    • /
    • 2018
  • The purpose of this study is to predict more accurate construction costs and to support efficient decision making in the planning and design stages of smart education facilities. The higher the error in the projected cost, the more risk a project manager takes. If the manager can predict a more accurate construction cost in the early stages of a project, he/she can secure a decision period and support a more rational decision. During the planning and design stages, there is a limited amount of variables that can be selected for the estimating model. Moreover, since the number of completed smart schools is limited, there is little data. In this study, various artificial intelligence models were used to accurately predict the construction cost in the planning and design phase with limited variables and lack of performance data. A theoretical study on an artificial neural network and deep learning was carried out. As the artificial neural network has frequent problems of overfitting, it is found that there is a problem in practical application. In order to overcome the problem, this study suggests that the improved models of Deep Neural Network and Deep Belief Network are more effective in making accurate predictions. Deep Neural Network (DNN) and Deep Belief Network (DBN) models were constructed for the prediction of construction cost. Average Error Rate and Root Mean Square Error (RMSE) were calculated to compare the error and accuracy of those models. This study proposes a cost prediction model that can be used practically in the planning and design stages.

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.