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Abstract

Deep learning neural network becomes very popular nowadays due to the reason that it can learn a very 
complex dataset such as the image dataset. Although deep learning neural network can produce high accuracy 
on the image dataset, it needs a lot of time to reach the convergence stage. To solve the issue, we have 
proposed a scaling method to improve the neural network to achieve the convergence stage in a shorter time 
than the original method. From the result, we can observe that our algorithm has higher performance than the 
other previous work.
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1. Introduction

Due to the high speed of the internet that we currently have today, there are many precious data we can 
keep into a storage and then we can use them for some purposes in the future. These data that have stored in 
the storage we called them as the dataset. Due to the reason that keeps storing the new data can make the 
dataset becomes very big. For example, image dataset, speech dataset, etc., are big in term of the size and 
attributes. We know that it is difficult to execute a big dataset with a simple machine learning algorithm such 
as linear regression, Euclidean distance, etc. Therefore, deep learning [1] has been proposed and it is one of 
the best methods that can operate with a huge dataset effectively and efficiently. 

Deep learning, also known as deep structured learning, is part of a broader family of machine learning 
methods based on learning data representations. Deep learning architectures such as recurrent neural 
networks [2], deep neural networks [3], and deep belief networks [4] have been applied to fields including 
computer vision, bioinformatics, speech recognition, natural language processing, audio recognition, etc., 
where they have generated results comparable to and in some cases greater to human experts.

Due to the complexity of the dataset (refers to the multidimensional properties), to the best of our 
knowledge, deep learning is the most appropriate method among the others to perform the big dataset’s 
experiment. With the integration of the deep learning technique and a machine, the machine can learn some 
behaviours effectively and accurately from the given data. However, there is an open problem in the deep 
learning technique that remains unsolved. The issue of the deep learning technique is that it needs to 
consume a lot of time to train a dataset if the neural network structure consists of many layers. Figure 1 
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explains the simple neural network (left) and deep learning neural network (right) structures. As we can see 
from Figure 1, the simple neural network has only 1 hidden layer but deep learning neural network has 4 
hidden layers. In the reality, the structure of the deep learning neural network can be more which will reach 
to 20 or more hidden layers. The more the number of hidden layer, the slower the training will be completed.

Figure 1. Simple neural network and deep learning neural network structure

Hence, to solve the issue, we study a way to shorten the convergence rate of the neural network. There are 
several researchers have studied on this work and they have proposed a few methods such as Momentum [5], 
Nesterov Momentum [6], Adagrad [7], RMSprop [8], Adam [9] etc., which these methods have shown the 
significant improvement in the convergence rate.

From the previous work, commonly, in order to reduce the convergence rate of the neural network, the 
researchers study more on the update rule in the back-propagation process. In contrast, we work on the 
equation in the feed-forward process to scale down the time of the convergence. We propose a scaling 
method that improves the convergence rate of the neural network which namely scaled neural network 
(Scaled-NN). Scaled-NN is a simple improvement algorithm and it speeds up the convergence stage of a 
neural network. We elaborate more of our proposed method in Section 2.

Sections 3 and 4 describe the experimental method and the results of the experiment, respectively. The 
final section (Section 5) concludes several remarks.

2. Scaled neural network

Scaled-NN leads the fast convergence stage and obtains the same performance in term of the accuracy of 
the original neural network structure during the training phase. Scaled-NN is a simple modification of the 
original equation (Eq. 1) and does not consume extra memory, but only has to add a few operations in the 
computation process. Before we explain the insight of the Scaled-NN, we briefly explain the basic equation 
of the neural network.

The common equation that we have known in the neural network is shown as follow:
�� = ��� + � (1)

where Ŷ is the predicted output, W is the weight, X is the input and b is the bias. In our Scaled-NN method, 
we add an extra variable, k, in front of the equation on the left-hand side of Eq. 1 which the final 
modification equation formed as follow:

�� = � ∙ (��� + �) (2)
where Ŷ is the predicted output, k is the scaling factor, W is the weight, X is the input and b is the bias. 

One of the important roles that the k can be used is the regularization process. Regularization is a process of 
introducing additional information in order to solve an ill-posed problem or to prevent overfitting. Noted that 
we use Eq. 2 only in the last layer of the neural network but before the activation function (usually use 
softmax and cross entropy loss function in the output layer) layer (shown in Eq. 4). After applying the 
activation function in Eq. 1 and 2, they can be a new form as shown in Eq. 3 and 4, respectively. 

�� = �(��� + �) (3)
�� = �(� ∙ (��� + �)) (4)



Improvement of the Convergence Rate of Deep Learning by Using Scaling Method                                     69                                             

where a(∙) is an activation function.

2.1 Step to produce the k

The variable k is not a random scalar value but it has several steps to generate it. We explain the detail of 

the steps in generating the variable k in the following paragraphs.

During the training phase, first, we generate the usual output, ��, as presented in Eq. 1 (shown in Eq. 5). 
Then, we apply the softmax activation function to the generated output, �� in order to produce a new output, 
�� (shown in Eq. 6). Next, we compute the cross product between �� and the original label (class), �. This 
will return a scalar value according to the correct label. Finally, we sum the cross product value with one 
value (shown in Eq. 7). Hence, the final value of � will be in between 1 and 2, inclusively. The reason we 
add one value in Eq. 7 is to prevent the zero value which is possible to be generated from Eq. 6. In other 
words, the value of the � is either equal to or more than 1 if the predicted value is incorrect, or the value of 
the � is more than 1 or equal to 2 if the predicted value is correct. Assume that if we allow the � to be zero, 
then the final predicted output will be zero because of the multiplication in the equation.

�� = ��� + �, −∞ ≤ �� ≤ ∞ (5)
�� = �������(��), 0 ≤ �� ≤ 1 (6)

� = (��
��) + 1, 1 ≤ � ≤ 2 (7)

To provide a clear description of the entire proposed method’s design, we present the pseudocode for this 
method in Algorithm 1

Algorithm 1 Pseudocode for Scaled Neural Network (Scaled-NN)

Input: MNIST dataset (��, ��, … , ��  ∈ �) 

Initialize all the parameters: learning rate (α), weights (W), bias (b)

   while W, b not converge do

      � ← �� + �

      � ← �������(�) × � + 1

      ��  ← �������_�����_�������(� ∙ �)

      update the weights and bias by using back-propagation method

   end while

   return W, b

Output: W, b

3. Experimental method

In this paper, we perform only MNIST dataset in our experiment. The MNIST dataset is a big dataset of 

handwritten digits. It is usually used for training various image processing systems. In this dataset, it consists 

of 60,000 training images and 10,000 testing images. In term of the programming language, we use 

TensorFlow which is written in Python programming language. TensorFlow is widely used nowadays due to 

the reason that it is an open-source software library for dataflow programming across a range of tasks and it 

is developed by the Google Brain team.

During the training phase, we initialize the batch size to 100. This means that it will run about 600 

iterations per epoch. In all experiment, we only execute 50 epochs and then record the accuracy value of the 

testing data in each epoch. Each accuracy value will be illustrated in Figure 2 in the next section.

In this paper, we test four neural network structures which are logistic regression [10], multi-layer 

perceptron [11], bi-directional recurrent neural network [12], and convolutional neural network [13]. From 

the setting of our experiment in term of the number of the layer, there are only two layers in logistic 
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regression which are the input layer and the output layer. For the multi-layer perceptron, we use four layers: 

one input layer, two hidden layers and one output layer. Noted that we use ReLU activation function in all 

hidden layers. As the bi-directional recurrent neural network, there are two layers which have the same 

neural network structure as the logistic regression, but the bi-directional recurrent neural network has its own 

computation to produce the predicted output at the output layer. In the convolutional neural network, we 

operate five layers: one input layer, three convolution layers, and one output layer. For the first two 

convolution layers, we use max pooling method. We apply the dropout [14] feature on the third convolution 

layer. We ensure the settings are the same all the times between the original neural network structure and our 

proposed method so that the results are comparable.

4. Experimental results

In this paper, we provide the graph of accuracy for four neural network structures in Figure 2. From each 
graph, red-dash-line refers to our proposed method, Scaled-NN and the cyan-solid-line refers to the original 
neural network structure. The Figure 2 (a) is the result of the logistic regression. The Figure 2 (b) and (c) are 
the output for the multi-layer perceptron and bi-directional recurrent neural network respectively. The last 
figure, Figure 2 (d) is the outcome of the convolutional neural network.

In Figure 2 (a), we observe that our Scaled-NN has significant improvement in term of accuracy. Noted 
that the y-axis refers to the accuracy and the x-axis stands for the number of the epoch. For the Figure 2 (b), 
although the result is not as significant as the Figure 2 (a), the area under the curve (AUC) can prove that our 
proposed method has higher performance than the original one. As the Figure 2 (c), we monitor that the 
overall performance of our Scaled-NN method is not as good as the previous figures (i.e. Figure 2 (a) and 
(b)), but we observe that the accuracy at the last epoch (i.e. 50th epoch) has the highest value compared to 
the original one. We study the Figure 2 (d) has less significant improvement in our Scaled-NN method 
compared to the Figure 2 (a) but the overall result is very promising in this paper. 

In summary, we analyze that Scaled-NN method has high performance and can be applied to any neural 
network structure.

(a) Logistic regression (b) Multi-layer perceptron
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(c) Bi-directional Recurrent Neural Network (d) Convolutional Neural Network

Figure 2. The graph of accuracy of the neural network. Cyan-solid-line is the original neural 
network and the red-dash-line is the Scaled-NN.

5. Conclusion

In this study, we propose Scaled-NN to reduce the time taken for the neural network structure and achieve 
the highest performance at the same time. In our experiment, we show that Scaled-NN method has the 
highest performance compared to the four original neural network structures which are the logistic regression, 
multi-layer perceptron, bi-directional recurrent neural network, and convolutional neural network. The result 
has shown a very promising output in the experiment.

In the future, we would like to use our Scaled-NN method to perform more experiments in other big 
datasets such as Cifar10, Cifar100, IMAGENET, etc. Besides that, we also believe that we can improve the 
method to be more efficient and effective during the training phase in the future.
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