• Title/Summary/Keyword: Zwicker's Loudness

Search Result 26, Processing Time 0.017 seconds

Physiological Signal Analyses of Frictional Sound by Structural Parameters of Warp Knitted Fabrics

  • Cho Gilsoo;Kim Chunjeong;Cho Jayoung;Ha Jiyoung
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2005
  • The purpose of this study is to offer acoustical database of warp knitted fabrics by investigating frictional sound properties and physiological responses according to structural parameters such as construction, lap form, and direction of mutual guide bar movement. Fabric sounds of seven warp knitted fabrics are recorded, and Zwicker's psychoacoustic param­eters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) - are calculated. Also, physiological responses evoked by frictional sounds of warp knitted fabrics are measured such as electroencephalogram (EEG), the ratio of high fre­quency to low frequency (HF/LF), respiration rate (RESP), skin conductance level (SCL), and photoplethysmograph (PPG). In case of constructions, frictional sound of sharkskin having higher loudness(Z) and fluctuation strength(Z) increases RESP. By lap form, open lap has louder and larger fluctuating sound than closed lap, but there aren't significant difference of physi­ological responses between open lap and closed lap. In direction of mutual guide bar movement, parallel direction evokes bigger changes of beta wave than counter direction because of its loud, rough, and fluctuating sound. Fluctuation strength(Z) and roughness(Z) are defined as important factors for predicting physiological responses in construction and mutual guide bar movement, respectively.

Psychological and Physiological Responses to the Rustling Sounds of Korean Traditional Silk Fabrics

  • Cho, Soo-Min;Yi, Eun-Jou;Cho, Gil-Soo
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.450-456
    • /
    • 2006
  • The objectives of this study were to investigate physiological and psychological responses to the rustling sound of Korean traditional silk fabrics and to figure out objective measurements such as sound parameters and mechanical properties determining the human responses. Five different traditional silk fabrics were selected by cluster analysis and their sound characteristics were observed in terms of FFT spectra and some calculated sound parameters including level pressure of total sound (LPT), Zwicker's psychoacoustic parameters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z), and sound color factors such as ${\Delta}L\;and\;{\Delta}f$. As physiological signals, the ratio of low frequency to high frequency (LF/HF) from the power spectrum of heart rate variability, pulse volume (PV), heart rate (HR), and skin conductance level (SCL) evoked by the fabric sounds were measured from thirty participants. Also, seven aspects of psychological state including softness, loudness, sharpness, roughness, clearness, highness, and pleasantness were evaluated when each sound was presented. The traditional silk fabric sounds were likely to be felt as soft and pleasant rather than clear and high, which seemed to evoke less change of both LF/HF and SCL indicating a negative sensation than other fabrics previously reported. As fluctuation strength(Z) were higher and bending rigidity (B) values lower, the fabrics tended to be perceived as sounding softer, which resulted in increase of PV changes. The higher LPT was concerned with higher rating for subjective loudness so that HR was more increased. Also, compression linearity (LC) affected subjective pleasantness positively, which caused less changes of HR. Therefore, we concluded that such objective measurements as LPT, fluctuation strength(Z), bending rigidity (B), and compression linearity (LC) were significant factors affecting physiological and psychological responses to the sounds of Korean traditional silk fabrics.

Evaluation of Sound Quality for Urban Environmental Sound (도시 환경음의 음질 평가)

  • Park, Hyeon-Ku;Shin, Yong-Gyu;Kim, Hang;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.529-534
    • /
    • 2005
  • This study performed an physical analysis on the characteristics of urban environmental sound divided into three parts depending on their features. Object sounds were classified into traffic sound, waster sound and spatial sound. Traffice sound was selected because it is dominant sound in urban environment, and water sound is selected because it generally supplies pleasantness in contrast to traffic sound, Finally spatial sound was considered because it represents sound in various places of city having lots of behaviors and types of sound due to them. Physcal analysis was carried out using sound quality indices based on Zwicker's loudness, $L_{Aeq}$(equivalent noise level), Ln(percentile noise level) and other acoutical attributes applied to previous study. Through the analysis, this study aims to compare the acoustical characteristics of urban environmental sound and to provide fundamental data for the evaluation of urban environmental sound.

  • PDF

Sound Quality Index Development of Electrically Powered Vehicle Roller Blind (차량용 전동 롤러 블라인드의 음질지수 개발)

  • Sung, Weonchan;Jo, Hyeonho;Kim, Seonghyeon;Park, Dongchul;Kang, Yeonjune
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.785-790
    • /
    • 2014
  • The purpose of this study is to identify the significant sound quality metric and compose the sound quality index of motor driven roller blind which is part of vehicle sunroof. Before subjective evaluation, sound characteristics of roller blind was analyzed and set the target operating sound for subjective evaluation. Thus, transfer sound of roller blind which has the characteristics of sound modulation was used for subjective evaluation. Linear regression was carried out by chosen Zwicker's metrics which are pointed by comments of jurors. Loudness and sharpness related metrics are prime metrics in sound quality index we composed. Effect of roller blind assay when it is attached to real vehicle was identified to evaluate the validity of index.

  • PDF

Characteristics of Rustling Sound of Laminated Fabric Utilizing Nano-web (나노웹을 이용한 라미네이트소재의 마찰음 특성)

  • Jeong, Tae-Young;Lee, Eu-Gene;Lee, Seung-Sin;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.620-629
    • /
    • 2013
  • This study examines the rustling sound characteristics of electrospun nanofiber web laminates according to layer structures. This study assesses mechanical properties and frictional sounds (such as SPL); in addition, Zwicker's psychoacoustic parameters (such as Loudness (Z), Sharpness (Z), Roughness (Z), and Fluctuation strength (Z)) were calculated using the Sound Quality Program (ver.3.2, B&K, Denmark). The result determined how to control these characteristics and minimize rustling sounds. A total of 3 specimens' frictional sound (generated at 0.63 m/s) was recorded using a Simulator for Frictional Sound of Fabrics (Korea Patent No. 10-2008-0105524) and SPLs were analyzed with a Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured with a KES-FB system. The SPL value of the sound spectrum showed 6.84~58.47dB at 0~17,500Hz. The SPL value was 61.2dB for the 2-layer PU nanofiber web laminates layered on densely woven PET(C1) and was the highest at 65.1dB for the 3-layer PU nanofiber web laminates (C3). Based on SPSS 18.0, it was shown that there is a correlation between mechanical properties and psychoacoustic characteristics. Tensile properties (LT), weight (T), and bending properties (2HB) showed a high correlation with psychoacoustic characteristics. Tensile linearity (LT) with Loudness (Z) showed a negative correlation coefficient; however, weight (T) with Sharpness (Z) and Roughness (Z), and bending hysteresis (2HB) with Roughness (Z) indicated positive correlation coefficients, respectively.

Luxuriousness Sound Quality Index Development of Electrically Powered Roller Blind (차량용 전동 롤러 블라인드의 고급감 음질지수 개발)

  • Sung, Weonchan;Jo, Hyeonho;Kang, Yeon June;Kim, Seonghyeon;Park, Dongchul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.345-351
    • /
    • 2015
  • Sounds of electrically powered vehicle components such as window lift system, roller blind, etc., are required to be more comfortable and not to irritate the people emotionally. In this paper, a study was conducted to identify the significant sound quality metric and compose the luxuriousness sound quality index of electrically powered vehicle roller blind which is part of vehicle sunroof system. Before conducting subjective evaluation, sound characteristics of roller blind was analyzed and set the target operating sound for subjective evaluation. Thus, transfer sound of roller blind which has the characteristics of sound modulation was used for subjective evaluation. Multiple linear regression analysis was carried out by chosen Zwicker's metrics which are pointed by comments of jurors. Loudness and sharpness related metrics are prime metrics in luxuriousness sound quality index we composed. Also, effect of roller blind assay when it is attached to real vehicle was identified to evaluate the validity of index.