• Title/Summary/Keyword: ZrO2 second phase

Search Result 34, Processing Time 0.026 seconds

Y2O3-stabilized ZrO2, Ni, and graphene-added Mg by reactive mechanical grinding processing for hydrogen storage and comparison with Ni and Fe2O3 or MnO-added Mg

  • Song, Myoung Youp;Choi, Eunho;Kwak, Young Jun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.609-616
    • /
    • 2019
  • The optimum powder to ball ratio was examined, which is one of the important conditions in reactive mechanical grinding processing. Yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ), Ni, and graphene were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Samples with a composition of 92.5 wt% Mg + 2.5 wt% YSZ + 2.5 wt% Ni + 2.5 wt% graphene (designated as Mg-2.5YSZ-2.5Ni-2.5graphene) were prepared by grinding in hydrogen atmosphere. Mg-2.5YSZ-2.5Ni-2.5graphene had a high effective hydrogen-storage capacity of almost 7 wt% (6.85 wt%) at 623 K in 12 bar H2 at the second cycle (n = 2). Mg-2.5YSZ-2.5Ni-2.5graphene contained Mg2Ni phase after hydriding-dehydriding cycling. Mg-2.5YSZ-2.5Ni-2.5graphene had a larger quantity of hydrogen absorbed for 60 min, Ha (60 min), than Mg-2.5Ni-2.5graphene and Mg-2.5graphene. The addition of YSZ also increased the initial dehydriding rate and the quantity of hydrogen released for 60 min, Hd (60 min), compared with those of Mg-2.5Ni-2.5graphene. Y2O3-stabilized ZrO2, Ni, and graphene-added Mg had a higher initial hydriding rate and a larger Ha (60 min) than Fe2O3, MnO, or Ni and Fe2O3-added Mg at n = 1.

The Electrical Properties and Residual Stress of Pb(Zr,Ti)O$_3$ Piezoelectric Thin Films fabricated by 2- Step Deposition Method (2단계 증착법으로 제조된 Pb(Zr, Ti)O$_3$압전 박막의 전기적 특성 및 잔류 응력에 관한 연구)

  • Kim, Hyuk-Hwan;Lee, Kang-Woon;Lee, Won-Jong;Nam, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.769-775
    • /
    • 2001
  • High quality PZT piezoelectric thin films were sputter- deposited on$ RuO_2$/$SiO_2$/Si substrates by using 2-step deposition method. As the first step, PZT seed layers were fabricated at a low temperature($475^{\circ}C$ ) to form a pure perovskite phase by reducing the volatility of Pb oxide. and then, as the second step, the PZT films were deposited at high temperatures ($530^{\circ}C$~$570^{\circ}C$) to reduce the defect density in the films. By this method, the pure perovskite phase was obtained at high deposition temperature range ($530^{\circ}C$~$570^{\circ}C$) and the superior electrical properties of PZT films were obtained on $RuO_2$substrate : 2Pr : 60$\mu$C/$\textrm{cm}^2$, $E_c: 60kV/cm, \;J_t: 10^{-6}A/cm^2\; at\; 250kV/cm$. The residual stress of PZT films fabricated by the 2-step deposition method was tensile and below 150MPa. It was attempted to control the residual stress in the PZT films by applying a negative bias to the substrate. As the amplitude of the substrate bias was increased, the residual tensile stress was slightly decreased, however, the ferroelectric properties of PZT films were degraded by ion bombardment.

  • PDF

Electrical and mechanical properties of NiO doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZrO$_3$-ceramics (NiO-Doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZr$_3$-O세라믹스의 전기 및 기계적 특성에 관한 연구)

  • 나은상;김윤호;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2000
  • Dielectric properties, piezoelectric properties and mechanical properties of NiO-doped Pb($(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ ceramics were investigated. Powders, prepared by columbite precursor method, were cold pressed and sintered at temperature ranging from $1100^{\circ}C$ to $1250^{\circ}C$. Dielectric constant and piezoelectric constant increased with amount of NiO up to 1 mol% and then decreased with further addition of NiO. It seems that NiO acts as a sintering aid at the sintering temperatures of $1150^{\circ}C$. When the samples were sintered at temperature above $1200^{\circ}C$, however, both dielectric constant and electromechanical coupling factor decreased and mechanical quality coefficient increased with addition of NiO. Hardness and fracture toughness of PNN-PT-PZ increased with addition of NiO up to 1 mol%, and then decreased slightly with further addition of NiO. These results showed that dielectric properties, piezoelectric properties and mechanical properties of PNN-PT-PZ system seemed to be closely related with microstructural factors such as grain size, bulk density and the amount of second phase.

  • PDF

Structure and Properties for 28 GHz Microwave Sintered PZT Nanocomposites

  • Tajima, Ken-ichi;Hwang, Hae-Jin;Sando, Mutsuo;Niihara, Koichi
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.352-355
    • /
    • 1998
  • Dense $ Pb(Zr, Ti)O_3(PZT)/Al_2O_3$ nanocomposites were prepared by the 28 GHz microwave heating method and conventional electric furnace sintering. Electrical and mechanical properties of the composites were investigated. The fracture strength of the PZT composites with 0.1vol% $Al_2O_3$ was significantly improved in both sintering methods. Smaller grain size and effective reinforcement of the PZT matrix by the second phase were considered to be responsible for the excellent fracture strength. Planar electromechanical coupling factor Kp of the composites sintered by 28GHz microwave heating was higher than that of the materical prepared by the conventional route. It seemed that the control of the reaction between PZT and $Al_2O_3$ by the microwave rapid sintering resulted in the high piezoelectric properties.

  • PDF

Effect of SiC Dispersion of $\beta$-Sialon Prepared from Wando Pyrophylite (완도납석으로부터 제조한 $\beta$-Sialon에 대한 SiC의 복합화 효과)

  • Lee, Hong-Lim;Kim, Shin;Lee, Hyung-Jik
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.261-267
    • /
    • 1988
  • $\beta$-Sialon powder was prepared by the reduction-nitridation reaction from the mixture of Wando Pyrophyllite and carbon black at 135$0^{\circ}C$ in $N_2$ atmosphere. $\beta$-SiC powder was added to the prepared $\beta$-Sialon powder to make $\beta$-Sialon-SiC composite. The $\beta$-Sialon-SiC composites were sintered pressurelessly at 175$0^{\circ}C$ for 2h, using $Y_2O_3$ and $ZrO_2$(monoclinic) as sintering aids. Comparatively higher values of the fracture toughness (3.8 MN/㎥/2), M.O.R. (470 MN/$m^2$) and vickers microhardness (13.7 MN/$m^2$) were obtained when 10 wt% $Y_2O_3$ was added as a sintering aid. The improved fracture toughness and M.O.R. are assumed to be the results of crack deflection and crack branching by the second phase SiC particles.

  • PDF

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method (Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상)

  • Il-Ryeol Yoo;Sang-Hyun Park;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

Deposition of Ferroelectric PB(Zr0.52Ti0.48)O3 Films on Platinized Silicon Using Nd:YAG Laser

  • Im, Hoong-Sun;Kim, Sang-Hyeob;Choi, Young-Ku;Lee, Kee-Hag;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.56-61
    • /
    • 1997
  • Lead zirconate titanate (PZT) thin fills were deposited onto the Pt/Ti/SiO2/Si substrate by the pulsed laser deposition with the second harmonic wavelength (532 nm) of Nd:YAG laser. In order to determine the optimum conditions for the film deposition, the phase of the films were investigated as functions of ambient oxygen pressure, substrate temperature, and laser fluence. Also the chemical composition analysis was conducted for the PZT films deposited under various ambient oxygen pressure. When the distance between substrate and bulk PZT target is set to 20 mm, the optimum conditions have been determined to be 3 torr of oxygen pressure, 1.5 J/cm2 of laser fluence, and 823-848(±10) K range of substrate temperature. At these conditions, perovskite phase PZT films were obtained on platinized silicon. The chemical composition of the films is very similar to that of PZT bulk target. The physical structure of the deposited films analyzed by scanning electron microscopy shows a columnar morphology perpendicular to the substrate surface. Capacitance-Voltage hysteresis loop measurements show also a typical characteristics of ferroelectric thin film. The dielectric constant is found to be 528 for the 0.48 μm thickness of PZT thin film.

A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method(II) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(II))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.120-130
    • /
    • 1995
  • To analyze the mechanical property and the residual stress in functionally gradient materials(FGMs), disctype TZP/Ni-and TZP/SUS304-FGM were hot pressed using powder metallurgy compared with directly bonded materials which were fabricated by the same method. The continuous interface and the microstructure of FGMs were characterized by EPMA, WDS, optical microscope and SEM. By fractography, the fracture behavior of FGMs was mainly influenced by the defects which originated from the fabrication process. And the defectlike cracks in the FGMs induced by the residual stress have been shown to cause failure. This fact has well corresponded to the analysis of the residual stress distribution by Finite Element Method (FEM). The residual stress generated on the interface (between each layer, and matrix and second phase, respectively) were dominantly influenced on the sintering temperature and the material constants. As a consequence, the interfacial stability and the relaxation of residual stress could be obtained through compositional gradient.

  • PDF

The Effect of NiO Addition to the PNN-PZT Piezoelectric Ceramics on Piezoelectric Properties (Pb(Ni1/3Nb2/3)O3-PZT 세라믹스 고용체에서 과잉 NiO첨가에 따른 압전특성 변화)

  • Choi Y. G.;Son Y. J.;Kweon J. C.;Cho K. W.;Yoon M. S.;Kim I. H.;Kim Y. M.;Ur S. C.
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.413-418
    • /
    • 2005
  • Perovskite $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3[PNN-PZT]$ ceramics were synthesized by conventional ceramic processing technique. In order to modify piezoelectric properties for sensor application in this system, NiO addition was considered to provide $Ni^{+2}$ as an acceptor, which was known to occupy with B site in the structure. The effect of NiO addition up to $8\;mol\%$ on the following piezoelectric properties as well as sintering properties was investigated. When NiO added more than $1\;mol\%$, average grain size was decreased and second phase was found to form. Moreover, the second phase caused decrease in relative dielectric constant $(\varepsilon_{33}T/\varepsilon0)$, electro-mechanical coupling factor $(k_p)$, and piezoelectric charge constant $(d_{33})$, while increasing mechanical quality factor $(Q_m)$. When $1\;mol\%$ NiO was added, density, dielectric properties and piezoelectric properties were abruptly increased.