DOI QR코드

DOI QR Code

Y2O3-stabilized ZrO2, Ni, and graphene-added Mg by reactive mechanical grinding processing for hydrogen storage and comparison with Ni and Fe2O3 or MnO-added Mg

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Jeonbuk National University) ;
  • Choi, Eunho (Department of Materials Engineering, Graduate School, Jeonbuk National University) ;
  • Kwak, Young Jun (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Jeonbuk National University)
  • 투고 : 2019.08.05
  • 심사 : 2019.10.07
  • 발행 : 2019.12.01

초록

The optimum powder to ball ratio was examined, which is one of the important conditions in reactive mechanical grinding processing. Yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ), Ni, and graphene were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Samples with a composition of 92.5 wt% Mg + 2.5 wt% YSZ + 2.5 wt% Ni + 2.5 wt% graphene (designated as Mg-2.5YSZ-2.5Ni-2.5graphene) were prepared by grinding in hydrogen atmosphere. Mg-2.5YSZ-2.5Ni-2.5graphene had a high effective hydrogen-storage capacity of almost 7 wt% (6.85 wt%) at 623 K in 12 bar H2 at the second cycle (n = 2). Mg-2.5YSZ-2.5Ni-2.5graphene contained Mg2Ni phase after hydriding-dehydriding cycling. Mg-2.5YSZ-2.5Ni-2.5graphene had a larger quantity of hydrogen absorbed for 60 min, Ha (60 min), than Mg-2.5Ni-2.5graphene and Mg-2.5graphene. The addition of YSZ also increased the initial dehydriding rate and the quantity of hydrogen released for 60 min, Hd (60 min), compared with those of Mg-2.5Ni-2.5graphene. Y2O3-stabilized ZrO2, Ni, and graphene-added Mg had a higher initial hydriding rate and a larger Ha (60 min) than Fe2O3, MnO, or Ni and Fe2O3-added Mg at n = 1.

키워드

참고문헌

  1. M.Y. Song, Y.J. Kwak, S.H. Lee, and H.R. Park, Korean J. Met. Mater. 51[2] (2013) 119-123. https://doi.org/10.3365/kjmm.2013.51.2.119
  2. Y. Wang, K. Luo, W. Ye, S. Du, J.S.Francisco, J. Yin, and P. Gao, Int. J. Hydrogen Energy 44[29] (2019) 15239-15245. https://doi.org/10.1016/j.ijhydene.2019.04.104
  3. S. Niyomsoan, D.R. Leiva, R.A. Silva, L.F. Chanchetti, R.N. Shahid, S.Scudino, P. Gargarella, and W.J. Botta, Int. J. Hydrogen Energy 44[29] (2019) 23257-23266. https://doi.org/10.1016/j.ijhydene.2019.07.071
  4. M.Y. Song, E. Choi, and Y.J. Kwak, Int. J. Hydrogen Energy 44[29] (2019) 3779-3789. https://doi.org/10.1016/j.ijhydene.2018.12.081
  5. Y.J. Kwak, S.H. Lee, and M.Y. Song, J. Nanosci. Nanotech. 18[9] (2018) 6040-6046. https://doi.org/10.1166/jnn.2018.15607
  6. M.Y. Song, E. Choi, andY.J. Kwak, Mater. Res. Bull. 108 (2018) 23-31. https://doi.org/10.1016/j.materresbull.2018.08.029
  7. Y.J. Kwak, E. Choi, and M.Y. Song, Met. Mater. Int. 24[5] (2018) 1181-1190. https://doi.org/10.1007/s12540-018-0055-1
  8. S.H. Hong, S.N. Kwon, and M.Y. Song, Korean J. Met. Mater. 49[4] (2011) 298-303. https://doi.org/10.3365/kjmm.2011.49.4.298
  9. J.J. Reilly and R.H. Wiswall Jr, Inorg. Chem. 7[11] (1968) 2254-2256. https://doi.org/10.1021/ic50069a016
  10. J.M. Boulet and N. Gerard, J. Less-Common Met. 89 (1983) 151-161. https://doi.org/10.1016/0022-5088(83)90261-8
  11. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd. 322 (2001) L5-9. https://doi.org/10.1016/S0925-8388(01)01173-2
  12. Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T.K. Bose, and R. Schulz, J. Alloys Compd. 347 (2002) 319-323. https://doi.org/10.1016/S0925-8388(02)00784-3
  13. G. Barkhordarian, T. Klassen, and R. Bormann, Scripta Materialia 49 (2003) 213-217. https://doi.org/10.1016/S1359-6462(03)00259-8
  14. G. Barkhordarian, T. Klassen, and R. Bormann, J. Alloys Compd. 407[1-2] (2006) 249-255. https://doi.org/10.1016/j.jallcom.2005.05.037
  15. O. Friedrichs, T. Klassen, J.C. Sanchez-Lopez, R. Bormann, and A. Fernandez, Scripta Materialia 54[7] (2006) 1293-1297. https://doi.org/10.1016/j.scriptamat.2005.12.011
  16. O. Friedrichs, F. Aguey-Zinsou, J.R. Ares Fernandez, J.C. Sanchez-Lopez, A. Justo, T. Klassen, R. Bormann, and A. Fernandez, Acta Materialia 54[1] (2006) 105-110. https://doi.org/10.1016/j.actamat.2005.08.024
  17. K.F. Aguey-Zinsou, J.R. Ares Fernandez, T. Klassen, and R. Bormann, Mat. Res. Bull. 41[6] (2006) 1118-1126. https://doi.org/10.1016/j.materresbull.2005.11.011
  18. M.Y. Song, J-L. Bobet, and B. Darriet, J. Alloys Compd. 340 (2002) 256-262. https://doi.org/10.1016/S0925-8388(02)00019-1
  19. S. Long, J. Zou, Y. Liu, X. Zeng, and W. Ding, J. Alloys Compd. 580 (Supplement 1) (2013) S167-170. https://doi.org/10.1016/j.jallcom.2013.02.063
  20. S. Long, J. Zou, Xi Chen, X. Zeng, and W. Ding, J. Alloys Compd. 615 (Supplement 1) (2014) S684-688. https://doi.org/10.1016/j.jallcom.2013.11.159
  21. J.-I. Song, G.-Y. Lee, J.-R. Kim, and J.-S. Lee, J. Cer. Proc. Res. 19[4] (2018) 279-284. https://doi.org/10.36410/JCPR.2018.19.4.279
  22. C.W. Park, J.H. Lee, S.H. Kang, J.H. Park, H.M. Kim, H.S. Kang, H.A. Lee, J.H. Lee, J.H. In, and K.B. Shim, J. Cer. Proc. Res. 19[2] (2018) 179-182. https://doi.org/10.36410/JCPR.2018.19.2.179
  23. S.-M. Sim, J. Cer. Proc. Res. 19[1] (2018) 1-4. https://doi.org/10.36410/JCPR.2018.19.1.1
  24. https://en.wikipedia.org/wiki/Yttria-stabilized_zirconia
  25. S.-H. Hong and M.Y. Song, Korean J. Met. Mater. 54[2] (2016) 125-131. https://doi.org/10.3365/kjmm.2016.54.2.125
  26. M.Y. Song, Y.J. Kwak, S.H. Lee, and H.R. Park, Korean J. Met. Mater. 54[3] (2016) 210-216. https://doi.org/10.3365/kjmm.2016.54.3.210
  27. M.Y. Song, Y.J. Kwak, and H.R. Park, Korean J. Met. Mater. 54[7] (2016) 503-509. https://doi.org/10.3365/kjmm.2016.54.7.503
  28. S.N. Kwon, H.R. Park, and M.Y. Song, Korean J. Met. Mater. 54[7] (2016) 510-519. https://doi.org/10.3365/kjmm.2016.54.7.510
  29. https://en.wikipedia.org/wiki/Graphene
  30. M.Y. Song, S.H. Baek, J.-L. Bobet, and S.H. Hong, Int. J. Hydrogen Energy 35 (2010) 10366-10372. https://doi.org/10.1016/j.ijhydene.2010.07.161
  31. M.Y. Song and Y.J. Kwak, Korean J. Met. Mater. 56[3] (2018) 244-251. https://doi.org/10.3365/KJM1M.2018.56.3.244
  32. M.Y. Song and H.R. Park, J. Alloys Compd. 270 (1998) 164-167. https://doi.org/10.1016/S0925-8388(98)00459-9
  33. M.Y. Song, Y.J. Kwak, S.H. Lee, and H.R. Park, Bull. Mater. Sci. 37[4] (2014) 831-835. https://doi.org/10.1007/s12034-014-0013-6
  34. M.Y. Song, I.H. Kwon, S.N. Kwon, C.G. Park, S.H. Hong, J.S. Bae, and D.R. Mumm, J. Alloys Compd. 415 (2006) 266-270. https://doi.org/10.1016/j.jallcom.2005.08.002
  35. S.N. Kwon, Improvement of the hydrogen absorption and desorption kinetics of Mg by catalytic effects of Fe2O3 and Ni, M.E. thesis, Jeonbuk National University, February 22, 2008.
  36. M.Y. Song, S.H. Lee, and D.R. Mumm, J. Cer. Proc. Res. 19[3] (2018) 211-217. https://doi.org/10.36410/JCPR.2018.19.3.211
  37. M.Y. Song, Y.J. Kwak, and S.H. Lee, J. Cer. Proc. Res. 20[2] (2019) 173-181. https://doi.org/10.36410/JCPR.2019.20.2.173
  38. S.-H. Hong and M.Y. Song, Korean J. Met. Mater. 56[2] (2018) 155-162. https://doi.org/10.3365/KJMM.2018.56.2.155
  39. M.Y. Song, E. Choi, and Y.J. Kwak, Korean J. Met. Mater. 56[5] (2018) 392-399. https://doi.org/10.3365/kjmm.2018.56.5.392
  40. M.Y. Song, Y.J. Kwak, and E. Choi, Korean J. Met. Mater. 56[7] (2018) 524-531. https://doi.org/10.3365/kjmm.2018.56.7.524
  41. M.Y. Song and Y.J. Kwak, Korean J. Met. Mater. 56[8] (2018) 611-619. https://doi.org/10.3365/kjmm.2018.56.8.611
  42. M.Y. Song, E. Choi, and Y.J. Kwak, Korean J. Met. Mater. 56[8] (2018) 620-627. https://doi.org/10.3365/kjmm.2018.56.8.620
  43. M.Y. Song and Y.J. Kwak, Korean J. Met. Mater. 56[12] (2018) 878-884. https://doi.org/10.3365/KJMM.2018.56.12.878