• Title/Summary/Keyword: Zr coating

Search Result 330, Processing Time 0.026 seconds

Sol-gel Mechanism of Self-patternable PZT Film Starting from Alkoxides Precursors

  • Hwang, Jae-Seob;Kim, Woo-Sik;Park, Hyung-Ho;Kim, Tae-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.385-392
    • /
    • 2003
  • Sol-gel preparation technique using a chemical reaction of metal alkoxides has been widely used for the fabrication of various materials including ceramics. However, its mechanism has been studied till now because a number of chemical ways are possible from various alkoxides and additives. In this study, the mechanism of hydrolysis, condensation, and polymerization of alkoxides were investigated from the fabrication of lead-zirconate-titanate (PbZr$\_$x/Ti$\_$l-x/O$_3$; PZT) thin film that is used as various micro-actuator, transducer, and sensor because of its high electro-mechanical coupling factors and thermal stability. Furthermore, the fabrication process and characteristics of self-patternable PZT film using photosensitive stabilizer were studied in order to resolve the problem of physical damage and properties degradation during dry etching for device fabrication. Using an optimum condition to prepare the self-patternable PZT film, more than 5000 ${\AA}$ thick self-patternable PZT film could be fabricated by three times coating. The PZT film showed 28.4 ${\mu}$c/cm$^2$ of remnant polarization (Pr) and 37.0 kV/cm of coercive field (E$\_$c/).

Fabrication of $La_2T_2O_7$ Thin Film by Chemical Solution Deposition (CSD 방법을 이용한 $La_2T_2O_7$ 박막제조)

  • 장승우;우동찬;이희영;정우식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.339-342
    • /
    • 1998
  • Ferroelectric L $a_2$ $Ti_2$ $O_{7}$(LTO) thin films were prepared by chemical solution deposition processes. Acetylacetone was used as chelating agent and nitric acid was added in the stock solution to control hydrolysis and condensation reaction rate. The LTO thin films were spin-coated on Pt/Ti/ $SiO_2$/(100)Si and Pt/Zr $O_2$/ $SiO_2$/(100)Si substrates. After multiple coating, dried thin films were heat-treated for decomposition of residual organics and crystallization. The role of acetylacetone in Ti iso-propoxide stabilization by possibly substituting $O^{i}$Pr ligand was studied by H-NMR. B site-rich impurity phase, i.e. L $a_4$ $Ti_{9}$ $O_{24}$, was found after annealing, where its appearance was dependent on process temperature indicating the possible reaction with substrate. Dielectric and other relevant electrical properties were measured and the results were compared between modified sol-gel and MOD processes.s.s.

  • PDF

The Effect of Cr from STS Interconnect on the Polarization Resistance of LSCF Cathode (스테인리스 스틸 연결재의 Cr이 LSCF 양극의 분극저항에 미치는 영향)

  • Hwang, Ho-June;Choi, Gyeong-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.715-719
    • /
    • 2007
  • STS444 with or without $La_{0.9}Sr_{0.1}MnO_3$ (LSM)-coating was contacted to $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) cathode on various electrolyte materials and the polarization resistance $(R_p)$ was measured by impedance spectroscopy. By making a symmetric half-cell and contacting only one side of the cathode with the interconnect, the effect of chromium (Cr) poisoning was separated from the aging effects. When the LSCF cathode was contacted with LSM-coated STS (stainless steel), $R_p$ of LSCF was lower than that contacted with the uncoated STS. Impedance patterns measured for the working electrode (W.E.), the counter electrode (C.E.) at $600^{\circ}C$ in air were analyzed. Normalized data of net Cr effect showed that $Ce_{0.9}Gd_{0.1}O_2$ (GDC) electrolyte is more tolerant to the chromium poisoning than $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}$ (LSGM) or 8 mol% $Y_2O_3-doped$ $ZrO_2$ (YSZ) electrolytes.

Design and Fabrication of Information Security Films with Microlouver Pattern and ZnO Nano-Ink Filling

  • Kim, Gwan Hyeon;Kim, So Won;Lee, Seong Eui;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.354-359
    • /
    • 2019
  • Information security films that can ensure personal privacy by reducing the viewing angle of display screens were fabricated by microlouver patterning and a ZnO nano-ink filling process. Optical simulation results demonstrated that all the microlouver films showed good security performances. Security performances were evaluated as calculated relative luminance ratios compared between the side and front. Based on the simulation results, microlouver films were fabricated by UV imprint lithography and nano-ink bar coating. However, distortion of the microlouver pattern occurred with the use of high-viscosity nano-inks such as ZrO2 and TiO2, and the CuO-filled microlouver film suffered from very low optical transmittance. Accordingly, the effects of ZnO filling height on security performance were intensively investigated through simulation and experimental measurements. The fabricated microlouver film with a 75-㎛-high ZnO filling exhibited a good relative luminance ratio of 0.75 at a 60° side angle and a transmittance of 44% at a wavelength of 550 nm.

The Fabrication of Ferroelectric PZT thin films by Sol-Gel Processing (졸-겔법에 의한 강유전성 PZT 박막의 제작)

  • Lee, B.S.;Chung, M.Y.;You, D.H.;Kim, Y.U.;Lee, S.H.;Lee, N.H.;Ji, S.H.;Park, S.H.;Lee, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.93-96
    • /
    • 2002
  • In this study, PZT thin films were fabricated using sol-gel processing onto Si/$SiO_2$/Ti/Pt substrates. PZT sol with different Zr/Ti ratio(20/80, 30/70, 40/60, 52/48) were prepared, respectively. The films were fabricated by using the spin-coating method on substrates. The films were heat treated at $450^{\circ}C$, $650^{\circ}C$ by rapid thermal annealing(RTA). The preferred orientation of the PZT thin films were observed by X-ray diffraction(XRD), and Scanning electron microscopy(SEM). All of the resulting PZT thin films were crystallized with perovskite phase. The fine crystallinity of the films were fabricated. Also, we found that the ferroelectric properties from the dielectric constant of the PZT thin films were over 600 degrees, P-E hysteresis constant. And the leakage current densities of films were lower than $10^{-8}A/cm^2$. It is concluded that the PZT thin films by sol-gel process to be convinced of application for ferroelectric memory device.

  • PDF

Effect of Process Parameters on Deposition Characteristics in Fabrication of Coated Tools (코팅공구의 제조에서 공정인자가 증착특성에 미치는 영향)

  • 김종희
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.368-375
    • /
    • 1995
  • Thermal CVD method is in general used for the fabrication of TiC/$Al_2O_3$-coated carbide tools. The growth of TiC layer and the coating morphology depended on the chemical composition of the hard metal substrate on which the tool properties were strongly influenced. TiC-coated layer was grown by the diffusion of carbon from the substrate, whereas the growth of $Al_2O_3$ layer was unrelated to the composition of substrate. In the nitride hard coatings of Zr, Nb and Mo metals deposited on high speed steel substrate by magnetron sputtering, the reactivity of the metal elements was decreased with increasing group number in one period of the periodic system. The hard material films exhibited the highest adhesion with the chemical composition of stoichiometry or substoichiometry. The critical load as a measure of adhesion was evaluated using scratch tester. The CVD tools indicated the values of 80 and 40N in the coated layers with proper bonding to the substrate and with $\eta$ phase of 1$\mu\textrm{m}$ in the interface respectively, but the nitride films prepared by sputtering of PVD showed only the values between 10 and 20N.

  • PDF

A Study on Zirconia/Metal.Functionally Gradient Materials by Sintering Method(1) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(1))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 1994
  • Functionally gradient materials(FGM), which have the continuous or stepwise variation in a composition and microstructure, are being noticed as the material that solves problems caused by heterogeneous interface of coating or joining. And these materials also expect new functions occured by gradient composition itself. Therefore, to examine possibility of thermal barrier materials, TZP/Mo·FGM and TZP/Ni·FGM were fabricated by sintering method. As to the sintered specimens, sintering shrinkage, relative density and Vicker's hardness in each composition were examined. The phenomena due to the difference of sintering shrinkage velocity during sintering process and the thermal stress induced through differences of thermal expansion coefficient in FGM were discussed. And the structure changes at interface and microsturcture of FGM were investigated. As a results, the difference of shrinkage between ceramic and metal was about 14% in TZP/Mo and 7% in TZP/Ni. The relative density and hardness were considerably influenced by metal content changes. Owing to unbalance of sintering shrinkage velocity between ceramic and metal, various sintering defects were occured. To control these sintering defects and thermal stress, gradient composition of FGM should be narrow. The microstructure changes of FGM depended on the ceramic or metal volume percents and were analogous to the theoretical design.

  • PDF

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

$Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni Composite Membrane for Hydrogen Separation by Aerosol Deposition Method (에어로졸 증착법[aerosol depostion method]에 의한 $Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni 수소분리막 제조)

  • Park, Young-Soo;Byeon, Myeong-Seob;Choi, Jin-Sub;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • BCY($Ba(Ce_{0.9}Y_{0.1})O_{3-\delta}$) oxide, shows high protonic conductivity at high temperatures, and are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BCY-Ni layer have to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and would be applied to the fabrication process of AD integration ceramic layer effectively. XRD and SEM measurements were conducted in order to analyze the characteristics of BCY-Ni membrane fabricated by AD process.

A study on the Improvement of Ferroeletric Characteristics of PZT thin film for FRAM Device (FRAM 소자용 PZT박막의 강유전특성에 관한 연구)

  • Lee, B.S;Chung, M.Y.;Shin, P.K.;Lee, D.C.;Lee, S.H.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1881-1883
    • /
    • 2005
  • In this study, PZT thin films were fabricated using sol-gel Processing onto $Si/SiO_2/Ti/Pt$ substrates. PZT sol with different Zr/Ti ratio(20/80, 30/70, 40/60, 52/48) were prepared, respectively. The films were fabricated by using the spin-coating method on substrates. The films were heat treated at $450^{\circ}C$, $650^{\circ}C$ by rapid thermal annealing(RTA). The preferred orientation of the PZT thin films were observed by X-ray diffraction(XRD), and Scanning electron microscopy(SEM). All of the resulting PZT thin films were crystallized with perovskite phase. The fine crystallinity of the films were fabricated. Also, we found that the ferroelectric properties from the dielectric constant of the PZT thin films were over 600 degrees, P-E hysteresis constant. And the leakage current densities of films were lower than $10^{-8}\;A/cm^2$. It is concluded that the PZT thin films by sol-gel process to be convinced of application for ferroelectric memory device.

  • PDF