• 제목/요약/키워드: Zr

검색결과 4,200건 처리시간 0.028초

SiC 첨가한 ZrO2의 기계적 특성에 대한 와이블 통계 해석 (Weibull Statistical Analysis on Mechanical Properties in ZrO2 with SiC Additive)

  • 남기우;김선진;김대식
    • 대한기계학회논문집A
    • /
    • 제39권9호
    • /
    • pp.901-907
    • /
    • 2015
  • 비커스 경도 실험은 세라믹스 재료의 경도를 특성화하는데 사용되는 일반적인 실험법이다. 그러나 경도도 하나의 확률변수로 취급하는 것이 일반적이다. 본 연구의 목적은 단상 $ZrO_2$ 와 SiC 첨가한 $ZrO_2/SiC$ 복합 세라믹스의 굽힘강도와 비커스 경도의 통계적 성질을 조사하는 것이다. 본 연구에서는 와이블 통계 해석에 기초하여 그들의 결과를 특성치와 변동을 비교 고찰하였다. 굽힘강도 및 비커스 경도는 모두 와이블 분포에 비교적 잘 적합할 수 있음을 알았다. 또한 단상 $ZrO_2$ 와 SiC 첨가한 $ZrO_2/SiC$ 복합 세라믹스와 그들의 열처리재에 대한 비커스 경도의 확률분포에 대한 척도 및 형상 파라메터 값을 평가하였다.

고순도 수소 생산을 위한 WGS 반응용 $CeO_2-ZrO_2$ 담체 최적화 (Optimization of Co-precipitated $CeO_2-ZrO_2$ Supports for Water-Gas Shift Reaction to Produce High Purity Hydrogen)

  • 정대운;엄익환;유병철;구기영;윤왕래;노현석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.757-760
    • /
    • 2009
  • 최근 들어 WGS 반응은 Pt과 같은 귀금속 촉매를 다양한 담체에 담지하여 낮은 온도에서 높은 활성을 지닌 촉매를 제조하기 위한 연구가 활발히 진행되고 있다. WGS 반응에서 귀금속 촉매가 높은 활성을 가지기 위해서 높은 산소저장능력(Oxygen Storage Capacity)과 산화환원능력(Redox)을 지닌 담체 개발이 필요하다. Ce-$ZrO_2$ 담체는 구조적으로 안정하며 높은 산소저장능을 가지고 있는 것으로 알려져 있다. Ce-$ZrO_2$ 구조는 Ce/Zr 비에 따라 다양한 변화가 생긴다. Ce/Zr 비가 6/4, 8/2인 경우 입방구조(Cubic)를 가지며 2/8인 경우 정방입계(Tetragonal)구조를 가진다. 이것은 담체 특성의 변화를 의미한다. 따라서, WGS 반응용 최적 담체를 선정하기 위해 Ce/Zr 비를 제조변수로 하여 담체특성을 분석하였다. 제조된 모든 담체는 공침법(Co-precipitation)을 사용하여 제조하였으며 $500^{\circ}C$에서 6시간 소성하였다. 담체 특성분석은 BET, XRD를 이용하였다. 추가적으로 제조변수를 다양화하여 담체 제조를 마쳤으며 특성분석이 진행 중이다. 분석 결과 $Ce_{0.2}Zr_{0.8}O_2$ 담체가 가장 넓은 표면적을 가지고 있으며 Ce/Zr 비가 높아질수록 표면적이 감소하는 경향을 나타내었다. Ce-$ZrO_2$ 담체의 나노결정크기는 Ce/Zr 비가 작아질수록 결정크기가 감소하는 경향을 나타내었으며 $Ce_{0.2}Zr_{0.8}O_2$가 Ce-$ZrO_2$ 담체 중에서 가장 작은 결정크기를 나타내어 3nm 이하의 나노-담체가 제조되었음을 확인하였다.

  • PDF

N2O 반응 가스를 주입한 RF Reactive Magnetron Sputtering에 의한 ZrO2 박막의 구조 및 부식특성 연구 (Structural and Corrosive Properties of ZrO2 Thin Films using N2O as a Reactive Gas by RF Reactive Magnetron Sputtering)

  • 지승현;이석희;백종혁;김준환;윤영수
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.69-73
    • /
    • 2011
  • A $ZrO_2$ thin film as a corrosion protective layer was deposited on Zircaloy-4 (Z-4) clad material using $N_2O$ as a reactive gas by RF reactive magnetron sputtering at room temperature. The Z-4 substrate was located in plasma or out of plasma during the $ZrO_2$ deposition process to investigate mechanical and corrosive properties for the plasma immersion. Tetragonal and monoclinic phases were existed in $ZrO_2$ thin film immersed in plasma. We observed that a grain size of the $ZrO_2$ thin film immersed in plasma state is larger than that of the $ZrO_2$ thin film out of plasma state. In addition, the corrosive property of the $ZrO_2$ thin films in the plasma was characterized using the weight gains of Z-4 after the corrosion test. Compared with the $ZrO_2$ thin film immersed out of plasma, the weight gains of $ZrO_2$ thin film immersed in plasma were larger. These results indicate that the $ZrO_2$ film with the tetragonal phase in the $ZrO_2$ can protect the Z-4 from corrosive phenomena.

삼원계 산화 절연층을 가진 자기터널접합의 자기·구조적 특성에 관한 연구 (Magnetoresistance and Structural Properties of the Magnetic Tunnel Junction with Ternary Oxide Barrier)

  • 박성민;이성래
    • 한국자기학회지
    • /
    • 제15권4호
    • /
    • pp.231-235
    • /
    • 2005
  • Al에 Zr과 Nb 또는 Zr과 Ti을 첨가한 삼원계 산화층을 절연층으로 사용한 자기터널접합(Magnetic Tunnel Junction, MTJ)에서, 각 원소의 비율에 따른 자기적 특성과 절연층의 미세구조 특성을 연구하였다. $(ZrNb)_{0.1}Al_{0.9}$$(ZrTi)_{0.1}Al_{0.9}$ 삼원계 산화 절연층을 가진 자기터널접합의 자기저항비는 Nb, 또는 Ti과 Zr의 첨가 비율이 1 : 1에 가까워질수록 낮아졌으며, Zr과 비교해 Nb 또는 Ti의 첨가량이 많아질수록 자기터널접합의 저항이 감소하였다. 이는 ZrNbAl, ZrTiAl 삼원계 합금 박막은 비정질인 ZrAl 이원계 합금박막과는 달리 다결정체로서 불균일한 산화 절연층을 형성하여 자기저항 및 전기적 특성을 감소시키는 역할을 하기 때문이다. 그러나 삼원계 산화 절연층의 경우 이원계 경우보다 낮은 터널 저항을 특성을 나타내었으며 이는 Nb 또는 Ti이 벤드갭 내에 국부적 에너지 준위를 만들어 에너지 장벽이 감소된 효과로 추측된다.

전도성(電導性) $SiC-ZrB_2$ 복합체(複合體)의 특성(特性) (Properties of Electro-Conductive $SiC-ZrB_2$ Composites)

  • 신용덕;박용갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1512-1515
    • /
    • 1996
  • Dense $SiC-ZrB_2$ electro-conductive ceramic composites were obtained by hot pressing for high temperature structural application. The influences of the $ZrB_2$ additions an the mechanical and electrical properties of $SiC-ZrB_2$ composites were investigated. Samples were prepared by adding 15, 30, 45 vol.% $ZrB_2$ particles as a second phase to a SiC matrix. Sintering of monolithic SiC and $SiC-ZrB_2$ composites were achieved by hot pressing under a $10^{-4}$ torr vacuum atmosphere from 1000 to $2000^{\circ}C$ with a pressure of 30 MPa and held for 60 minutes at $2000^{\circ}C$. SiC and $SiC-ZrB_2$ samples obtained by hot pressing were fully dense with the relative densities over 99%. Flexural strength and fracture toughness of the samples were improved with the $ZrB_2$ contents. In the case of SiC sample containing 30vol.% $ZrB_2$, the flexural strength and fracture toughness showed 45% and 60% increase, respectively compared to those of monolithic SiC sample. The electrical resistivities of $SiC-ZrB_2$ composites were measured utilizing the four-point probe method and they decreased significantly with Increasing $ZrB_2$ contents. The resistivity of SiC-30vol.% $ZrB_2$ showed $6.50{\times}10^{-4}{\Omega}{\cdot}cm$.

  • PDF

침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동 (Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

고감성 의류용 축열 니트소재의 물성 (Physical Property of Heat Storage Knitted Fabrics for High Emotional Garment)

  • 김현아;허경;김승진
    • 한국의류산업학회지
    • /
    • 제17권2호
    • /
    • pp.295-304
    • /
    • 2015
  • This paper investigated wear comfort property of heat storage knitted fabrics for high emotional garment. For this purpose, ZrC imbedded PET knitted fabric was prepared and various physical properties such as thermal, wicking and drying characteristics were measured. In addition, far-infrared emission characteristics of ZrC imbedded PET was analysed and tactile hand property and dye affinity of ZrC imbedded knitted fabric were also studied in comparison with regular and other commercial heat storage PET knitted fabrics. It was observed that Zr imbedded amount in the yarn was 19.29% by ingredient analysis and far-infrared emission energy was $3.65{\times}10^2W/m^2$, emissivity was 0.906 at the range of wavelength $6{\sim}20{\mu}m$. It was found that maximum heat flow (Qmax) of ZrC imbedded PET knitted fabric was lower than that of regular PET one and warmth keepability rate was higher than that of regular PET one, which means ZrC imbedded PET have heat storage property. Drying property of ZrC imbedded knitted fabric was better than that of regular PET one due to heat by far-infrared emitted from ZrC in the core of filament. It revealed that wicking property of the ZrC imbedded fabric was not influenced by far-infrared emission, but affected by fibre physical properties. Tactile hand property of ZrC imbedded knitted fabric was not influenced by imbedding ZrC in the filament but affected preferably by structure of knitted fabric. Dye affinity of ZrC imbedded PET knitted fabric was less influenced by dyeing temperature and time than regular PET knitted one.

침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동 (Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF

Fabrication and Mechanical Properties of Cordierite/$ZrO_2$ Composites by Pressureless Sintering

  • Enhai Sun;Choa, Yong-Ho;Tohru Sekino;Koichi Niihara
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.233-242
    • /
    • 2000
  • Cordierite/ZrO$_2$ composites with 5 to 25wt% ZrO$_2$ were fabricated by prssureless sintering, and their densification behavior, fracture strength, fracture toughness, microstructure and thermal expansion behavior were studied. The ZrO$_2$ addition into cordierite matrix affects the densification behavior and mechanical properties of the composites. By dispersing 25wt% ZrO$_2$, densified cordierite/ZrO$_2$ composite with a relative density of 98.5% was obtained at optimum sintering condition of 144$0^{\circ}C$/2H. Both fracture strength and toughness were increased from 140 to 290MPa and from 1.6 to 3.5 MPam$\frac{1}{2}$, respectively, by dispersing 25wt% ZrO$_2$ into the cordierite matrix. ZrO$_2$ particles were homogenously dispersed into cordierite matrix, which intragranular particles were fine(<100nm) and intergranular particles were coarse. The toughening mechanisms in the present composites were mainly attributed to martensitic transformation toughening. Then, the addition of ZrO$_2$ is likely to have little deleterious effect upon thermal expansion coefficient of cordierite.

  • PDF

Characterization of the Oxide Layer Formed on the Cu-Zr Based Metallic Glass during Continuous Heating

  • Lim, Ka-Ram;Kim, Won-Tae;Kim, Do-Hyang
    • Applied Microscopy
    • /
    • 제42권3호
    • /
    • pp.174-178
    • /
    • 2012
  • In the present study, the oxidation behavior of $Cu_{50}Zr_{50}$ and $Cu_{46}Zr_{46}Al_8$ metallic glasses has been investigated using transmission electron microscopy with a particular attention on the oxidation behavior in the supercooled liquid state. Identification of the oxidation product after continuous heating treatment shows that in $Cu_{50}Zr_{50}$ metallic glass, $ZrO_2$ with the monoclinic structure forms on the supercooled liquid as well as on the crystallized matrix. On the contrary, in $Cu_{46}Zr_{46}Al_8$ metallic glass, $ZrO_2$ with the tetragonal structure forms on the supercooled liquid, but that with the monoclinic structure forms on the crystallized matrix. The result indicates that the $Cu_{50}Zr_{50}$ metallic glass exhibits far better oxidation resistance in the supercooled liquid state than the $Cu_{46}Zr_{46}Al_8$ metallic glass.