• Title/Summary/Keyword: Zoysiagrass(Zoysia japonica)

Search Result 95, Processing Time 0.018 seconds

Physiological Responses of Warm-Season Turfgrasses under Deficit Irrigation (소량관수로 인한 난지형 잔디의 생리적 반응)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.9-22
    • /
    • 2009
  • Due to increasing concerns over issues with both water quantity and quality for turfgrass use, research was conducted to determine the response of five warm-season turfgrasses to deficit irrigation and to gain a better understanding of relative drought tolerance. St. Augustinegrass(Stenotaphrum secundatum [Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore Paspalum(Paspalum vaginatumSwartz.), 'Empire' zoysiagrass(Zoysia japonica Steud.), and 'Pensacola' bahiagrass(Paspalum notatum Flugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at100%, 80%, 60%, or 40% of evapotranspiration(ET). Evaluations included: a) shoot quality, leaf rolling, leaf firing; b) leaf relative water content(RWC), soil moisture content, chlorophyll content index(CCI), canopy photosynthesis(PS); c) multispectral reflectance(MSR); d) root distribution; and e) water use efficiency. Grasses irrigated at 100% and 80% of ET had no differences in visual quality, leaf rolling, leaf firing, RWC, CCI, and PS. Grasses irrigated at 60% of ET had higher values in physiological aspects than grasses irrigated at 40% of ET. 'Sealsle 1' and 'Palmetto' had a deeper root system than 'Empire' and 'Pensacola', while 'Floratam' had the least amount of root mass. Photosynthesis was positively correlated with visual assessments such as turf quality, leaf rolling, leaf firing, and sensor-based measurements such as CCI, soil moisture, and MSR. Reducing the amount of applied water by 20% did not reduce turfgrass quality and maintained acceptable physiological functioning.

Antagonistic Mechanisms and Culture Conditions of Isolated Microbes Applied for Controlling Large Patch Disease in Zoysiagrass (한국잔디 갈색퍼짐병 방제를 위한 선발 미생물의 길항기작 및 배양조건)

  • Kim, Young-Sun;Ma, Ki-Yoon;Lee, Geung-Joo
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.492-500
    • /
    • 2015
  • Our previous report demonstrated successful isolation of soil-borne bacteria that suppressed the potential of Rhizoctonia solani AG2-2 (IV) causing turfgrass large patch disease when applied to Korean lawngrass (Zoysia japonica). The current study aimed to uncover the mechanisms of this antagonism of Rhizoctonia solani and to define culture conditions for the isolated microbes. We found that two Bacillus isolates, I-009 and FRIN-001-1 strains, produced cellulase and siderophore, but not chitinase, while the Pseudomonas YPIN-022 strain was found to release only siderophore, implying that three antagonistic bacteria commonly interrupt Fe uptake by the large patch pathogen. The I-009 and FRIN-001-1 isolates grew best at 35 and $30^{\circ}C$ in growth medium of pH 5 to 8 for 32 and 28 h, respectively, while optimum growth for the YPIN-022 strain was found at $35^{\circ}C$ at pH 5 to 9 for 24 h. Good growth of I-009 and YPIN-022 over 24 h was obtained in M9 minimal medium supplemented with 1% sucrose, 0.5% yeast extract and 0.1% potassium chloride. FRIN-001-1 grew well in M9 medium with 1% mannitol, 0.5% yeast extract and 0.1% potassium phosphate dibasic.

Isolation and Selection of Antagonistic Microbes for Biological Control of Zoysiagrass Large Patch Disease (한국잔디 갈색퍼짐병의 생물학적 방제를 위한 길항미생물의 분리 및 선발)

  • Ma, Ki-Yoon;Kwark, Soo Nyeon;Lee, Geung-Joo
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.657-665
    • /
    • 2013
  • A large patch disease caused by Rhizoctonia solani AG2-2 (IV) is a serious problem in Korean lawngrass (Zoysia japonica) sites including golf courses and sports fields in Korea. Antagonistic microorganisms against R. solani AG2-2 (IV) were isolated from various forest and crop soil sources in Southern Korea. Among the 61 isolates, I-009, FRIN-001-1, and YPIN-022 strains showing dramatic inhibition of the mycelial growth of R. solani AG2-2 (IV) in the pairing culture were selected as the most potential antagonistic microorganisms for this study. Based on the 16s RNA sequence comparison, I-009 and FRIN-001-1 isolates were identified as Bacillus spp., while YPIN-022 isolate belongs to the genus Pseudomonas. The greater inhibition (clear) zone between two edges of the selected and pathogenic microbes ranged from 11 to 15 mm in three selections, but the others averaged to 7 mm out of 30 mm distance. In another antifungal test using culture filtrate, those three isolates represented a range of 51.7 to 63.5% suppression potential. The selected isolates also inhibited significantly the stem-segment colonization by R. solani AG2-2 (IV) in vivo test by 28.1%, 43.0%, and 23.7% when inoculated with I-009, FRIN-001-1, and YPIN-022, respectively. The highest antagonistic activity for the large patch disease was demonstrated by the isolate FRIN-001-1, which will be useful for developing a bio-pesticide against Rhizoctonia.

Morphological Variation and Characteristics of Native Medium-Leaf Type Zoysiagrasses (Zoysia spp.) by Site Environment (입지환경에 따른 자생 중엽형 한국잔디의 형태적 변이 및 특성)

  • Bae, Eun-Ji;Lee, Kwang-Soo;Han, Eun-Hui;Park, Yong-Bae;Lee, Sang-Myeong;Huh, Moo-Ryong
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.184-190
    • /
    • 2013
  • It is important for genetic resources to collect and identify in native medium-leaf type zoysiagrasses species distributed in Korea. This study was conducted to investigate morphological variation and characteristics of native medium-leaf type zoysiagrasses from coastal, island and inland regions in Korea. Among them, 75 collected lines was confirmed to have various morphological variations, accessions were classified into 2 main based group coastal and inland regions by morphological characteristics and site environment. Group I included Z. sinica type, this group showed 3.7 mm in leaf width, 29 in number of seed per spikelet and 5.0 mm in seed length. Group II included Z. japonica type, this group showed 4.4 mm in leaf width, 42 in number of seed per spikelet and 3.5 mm in seed length. There is a need for additional research on growth characteristics and the molecular level for the introgressive hybridization between species which confirmed that cross-pollination is possible due to protogyny. The individuals showing variations should be preserved as valuable genetic resources for the expansion of variations in zoysiagrasses, and the results of this investigation on the genetic resources collected will be highly valuable in breeding high quality turfgrass.

Comparison of Green Color Retention of Zoysiagrass and Cool-season Grass under Multilayer System, USGA System, and Mono-layer System of Sports Field (스포츠용 다단구조, USGA구조 및 약식구조 지반에서 한국잔디 및 한지형 잔디의 녹색기간 비교)

  • Kim, Kyoung-Nam
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.342-353
    • /
    • 2016
  • This study was initiated to evaluate green color retention under three different soil systems. Several turfgrasses were evaluated in multi-layer, USGA, and mono-layer systems. Turfgrass entries were comprised of three cultivars of Korean lawngrass (Zoysia japonica Steud.) as warm-season grass (WSG) and three blends and three mixtures of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.) as cool-season grass (CSG). Significant differences were observed in visual turf color and green color retention among soil systems and turfgrasses. Both the multi-layer and USGA systems were highly associated with better color ratings and longer color retention, as compared with the mono-layer system. Seasonal variation of visual turf color greatly occurred from late December to early spring. CSG exhibited longer color retention than did WSG. The latter maintained green color for approximately 6 months, regardless of the soil system. Spring green-up of Korean lawngrass occurred from early to middle May, while it underwent discoloration from late October to early November. Among the CSGs green-up occurred between early March and early April and leaf color was maintained until middle December to early February. Therefore, the CSGs were green for 8.5 to 11 months, depending on turfgrass and soil system. The mean period of green color duration across all soil systems was approximately 10-11, 9-10 and 8.5-9.0 months for PR, KB and TF, respectively. As for the CSG mixtures, the greater the proportion of PR, the longer the green color retention, while the higher the proportion of TF, the shorter the color retention. There was greater variation in green color duration among the CSGs than the WSGs. Across soil systems, color retention differences of 2 to 6 days were observed for the Korean lawngrass, but 7 to 36 days for the CSGs. These results demonstrate that green color retention varied greatly according to soil systems and also among turfgrasses. Selections of turfgrass and soil system should be made using a concept-oriented approach, when establishing garden, park, soccer field, golf course and other sports field. Information obtained in this study can be used to select soil systems and turfgrasses based on the expected degree of leaf color retention.