DOI QR코드

DOI QR Code

Antagonistic Mechanisms and Culture Conditions of Isolated Microbes Applied for Controlling Large Patch Disease in Zoysiagrass

한국잔디 갈색퍼짐병 방제를 위한 선발 미생물의 길항기작 및 배양조건

  • 김영선 (효성오앤비(주)) ;
  • 마기윤 (전라남도농업기술원 생명농업기술과) ;
  • 이긍주 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2015.04.07
  • Accepted : 2015.05.22
  • Published : 2015.08.31

Abstract

Our previous report demonstrated successful isolation of soil-borne bacteria that suppressed the potential of Rhizoctonia solani AG2-2 (IV) causing turfgrass large patch disease when applied to Korean lawngrass (Zoysia japonica). The current study aimed to uncover the mechanisms of this antagonism of Rhizoctonia solani and to define culture conditions for the isolated microbes. We found that two Bacillus isolates, I-009 and FRIN-001-1 strains, produced cellulase and siderophore, but not chitinase, while the Pseudomonas YPIN-022 strain was found to release only siderophore, implying that three antagonistic bacteria commonly interrupt Fe uptake by the large patch pathogen. The I-009 and FRIN-001-1 isolates grew best at 35 and $30^{\circ}C$ in growth medium of pH 5 to 8 for 32 and 28 h, respectively, while optimum growth for the YPIN-022 strain was found at $35^{\circ}C$ at pH 5 to 9 for 24 h. Good growth of I-009 and YPIN-022 over 24 h was obtained in M9 minimal medium supplemented with 1% sucrose, 0.5% yeast extract and 0.1% potassium chloride. FRIN-001-1 grew well in M9 medium with 1% mannitol, 0.5% yeast extract and 0.1% potassium phosphate dibasic.

본 연구는 한국잔디에 발생하는 주요 병해인 갈색퍼짐병 억제능력을 보인 3가지 길항 미생물의 길항기작과 미생물제제의 개발에 필요한 배양 조건을 밝히는 것이다. 길항미생물들의 길항작용 기작인chitinase, cellulase 및 siderophore생산능 조사에서 선발 길항미생물 모두 chitinase 활성은 없었으나, I-009균주와 FRIN-001-1균주에서 cellulase와 siderophore의 활성이 있어 진균의 외막가수분해 및 경쟁적 길항작용이 있다고 판단하였다. 그러나 YPIN-022균주는 siderophore의 생산능은 확인하였으나, chitinase와 cellulase의 생산능은 없는 것으로 확인되었다. 선발 길항미생물의 실용화를 위해서는 대량 배양이 필수적이므로 배양학적 특징을 탐색하고자 배지, 온도, pH, 배양시간, 탄소원, 질소원, 무기화합물 등의 영향을 조사한 결과 세 균주 모두 LB 배지에서 생육이 가장 왕성하였다. 최적 배양 온도는 I-009와 FRIN-001-1균주는 pH 5-8범위에서 $35^{\circ}C$$30^{\circ}C$ 온도로 32시간 및 28시간 배양할 때 각각 균체의 생장이 가장 높았다. Pseudomonas 속의 YPIN-022균주는 $35^{\circ}C$ 배양 온도로 pH 5-9 배지위에서 24시간 배양시킬 때 생육이 가장 높았다. 탄소원으로 1% sucrose, 질소원으로 0.5% 효모추출물, 무기화합물로 0.1% 염화칼륨을 첨가한 배지에서 I-009와 YPIN-022균주의 생육이 가장 좋았으나, FRIN-001-1균주는 탄소원으로 mannitol, 무기화 합물로 인산칼륨 첨가배지에서 생육이 더 양호했다.

Keywords

References

  1. Bhat, K.M. and R. Maheshwari. 1987. Sporotrichum thermophile growth, cellulose degradation and cellulase activity. Appl. Environ. Microbiol. 53:2175-2182.
  2. Broque, K., I. Chet, M. Holliday, R. Cressman, P. Biddle, S. Knowlton, C.J. Mauvais, and R. Broglie. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194-1197. https://doi.org/10.1126/science.254.5035.1194
  3. Burpee, L.L. and L.G. Goulty. 1984. Suppression of brown patch disease of creeping bentgrass by isolate of nonpathogenic Rhizoctonia spp. Phytopathology 74:692-694. https://doi.org/10.1094/Phyto-74-692
  4. Chet, I. 1990. Biological control of soil-borne plant pathogens with fungal antagonists in combination with soil treatment, p.15-25. In: D. Hornby(Ed), Biological Control of soil-borne Plant Pathogens. CAB International, Wallingford, Oxon, UK.
  5. Choi, D.H., N.I. Park, S.H. Choi, K.W. Park, J.W. Kim, Y.S. Kwak, and J.J. Lee. 2012. Composition and invading problem of interspecies turfgrass on golf course. Kor. J. Weed Sci. 32:174-179. https://doi.org/10.5660/KJWS.2012.32.3.174
  6. Chun, J. Y., I.H. Ryu, S.U. Lee, and K.S. Lee. 2000. Purification and properties of anticaries microbial agent by Bacillus alkalophilshaggy JY-827. Kor. J. Appl. Microbiol. Biotechnol. 28:270-278.
  7. Compant, S., B. Duffy, J. Nowak, C. Clément, and E.A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  8. Couch, H. B. 1985. Common names for turfgrass disease. In: Common names for Plant Disease. ed. by J. D. Hansen. Plant Dis. 63: 629-676.
  9. Fridlender, M., J. Inbar, and I. Chet. 1993. Biological control of soilborne plant pathogens by a ${\beta}$-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol. Biochem. 25:1211-1221. https://doi.org/10.1016/0038-0717(93)90217-Y
  10. Giesler, L.J. and G,Y. Yuen. 1998. Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Prot. 17:509-513. https://doi.org/10.1016/S0261-2194(98)00049-0
  11. Goodman, D.M. and L.L. Burpee. 1991. Biological control of dollar spot disease of creeping bentgrass. Phytopathology 81:1438-1446. https://doi.org/10.1094/Phyto-81-1438
  12. Hoy, M.A. and D.C. Herzog. 1985. Biological control in agricultural IPM system. Academic Press. Orlando, Florida, USA.
  13. Hsu, S.C. and J.L. Lockwood. 1975. Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Appl. Microbiol. 29:422-426.
  14. Kang, S.W., M.J. Chung, I.H. Yeo, and D.H. Kim. 1998. Isolation and characterization of Pseudomonas vesicularis KW-15 for producing chitinase. J. Chitin. Chitosan. 3:303-312.
  15. Kim, H.Y. and T.S. Lee. 2009. Isolation of antifungal substances by Bacillus amyloliquefaciens IUB158-03 and antagonistic activity against pathogenic fungi. Kor. J. Mycol. 37:96-103. https://doi.org/10.4489/KJM.2009.37.1.096
  16. Kim, Y.S., S.K. Ham and H.J. Lim. 2012. Monitoring of soil chemical properties and pond water quality in golf course after application of SCB liquid fertilizer. Asian J. Turfgrass Sci. 26:44-53.
  17. Lawton, M.B. and L.L. Burpee. 1990. Effect of rate and frequency of application of Typhulapha corrhiza on biological control of Typhula blight of creeping bentgrass. Phytopathology 80:70-73. https://doi.org/10.1094/Phyto-80-70
  18. Lee, J. J., H. S. Lim, T. H. Chang, and S. D. Kim. 1999. Isolation of siderophore producing Pseudomonas fluorescens GL7 and its biocontrol activity against root-rot disease. Kor. J. Appl. Microbiol. Biotechnol. 27:427-432.
  19. Limon, M.C., M.R. Chacon, R. Mejias, J. Delgado-Jarana, A.M. Rincon, A.C. Codon. T. Benitez. 2004. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. App. Microbiol. Biotechnol. 64:675-685. https://doi.org/10.1007/s00253-003-1538-6
  20. Lopez, C.S., H. Heras, S.M. Ruzal, C. Sanchez-Rivas, and E. A. Rivas. 1998. Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium. Curr. Microbiol. 36:55-61. https://doi.org/10.1007/s002849900279
  21. Lounes, A., Lebrihi, A., Benslimane, C., Lefebvre, G. and Germain, P. 1996. Regulation of spiramycin synthesis in Streptomyces ambofaciens: effects of glucose and inorganic phosphate. Appl. Microbiol. Biotechnol. 45:204-211. https://doi.org/10.1007/s002530050671
  22. Ma, K.Y., S.N. Kwak, and G.J. Lee. 2013. Isolation and selection of antagonistic microbes for biological control of zoysiagrass large patch disease. Kor. J. Hort. Sci. Technol. 31:657-665.
  23. Martinez-Cuesta, C., T. Requena, and C. Pelaez. 2002. Effect of bacteriocin-induced cell damage on the branched-chain amino acid transamination by Latococcus lactis. FEMS Microbiol. Lett. 217:109-113. https://doi.org/10.1111/j.1574-6968.2002.tb11463.x
  24. Melchers, L.S., M.B. Sela-Buuriage, S.A. Vloemans, C.P. Woloshuk, J.S. van Roekel, J. Pen, P.J.M. van den Elzen, and B.J.C. Cornelissen. 1993. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and ${\beta}$-1,3-glucanses in transgenic plants. Plant Mol. Biol. 21:583-593. https://doi.org/10.1007/BF00014542
  25. Mulders, J.W.M., I.J. Boerrigter, H.S. Rollema, R.J. Siezen, and W.M. de Vos. 1991. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201:581-584. https://doi.org/10.1111/j.1432-1033.1991.tb16317.x
  26. Nelson, E.B. and C.M. Craft. 1991. Introduction and establishment of strains of Enterobacter cloacae in golf course turf for the biological control of dollar spot. Plant Dis. 75:510-514. https://doi.org/10.1094/PD-75-0510
  27. Payne, S. M. 1994. Detection, isolation, and characterization of siderophore. Methods Enzymol. 235:329-344. https://doi.org/10.1016/0076-6879(94)35151-1
  28. Roberts, W.K., and C.P. Selitrennikoff. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134: 169-176.
  29. Sela-Buurlage, M.B., A.S. Ponstein, S.A. Bres-Vloemans, L.S. Melchers, P.J.M. van den Elzen, and B.J.C. Cornelissen. 1993. Only specific tobacco (Nicotiana tabacum) chitinases and $\beta$-1,3-glucanases exhibit antifungal activity. Plant Physiol. 101: 857-863.
  30. Shivanna, M.B., M.S. Meera, and M. Hyakumachi. 1994. Sterile fungi from zoysiagrass rhizosphere as plant growth promoters in spring wheat. Can. J. Microbiol. 40:637-644. https://doi.org/10.1139/m94-101
  31. Shim, G.Y., J.W. Kim, and H.K. Kim. 1994. Occurrence of Rizoctonia blight of zoysiagrasses in golf courses in Korea. Kor. J. Plant Pathol. 10(1):54-60.
  32. Shim, G.Y. and H.K. Kim. 2000. Control of large patch caused by Rhizoctonia solani AG2-2 by combined application of antagonists and chemicals in golf courses. Kor. Turfgrass Sci. 13:131-138.
  33. Shomura, T., N. Nishizawa, M. Iwata, J. Yoshida, M. Ito, S. Aman, M. Koyama, M. Kojima, and S. Inouye. 1983. Studies on a new nucleoside antibiotic, dapiramicin. I. Producing organism, assay method and fermentation. J. Antibiot. 36:1300-1304. https://doi.org/10.7164/antibiotics.36.1300
  34. Smith, J.D. 1980. Is biological control of Marasmius oreades fairy rings possible? Plant Dis. 64:348-354. https://doi.org/10.1094/PD-64-348
  35. Tredway, L.P. and L.L. Burpee. 2001. Rhizoctonia diseases of turfgrass. The Plant Health Instructor. DOI: 10.1094/PHI-I-2001-1109-01.
  36. Viji, G., W. Uddin, and C.P. Romaine. 2003. Suppression of gray leaf spot (blast) of perennial ryegrass turf by Pseudomonas aeruginosa from spent mushroom substrate. Biol. Control 26:233-243. https://doi.org/10.1016/S1049-9644(02)00170-6

Cited by

  1. Biocontrol of Large Patch Disease in Zoysiagrass (Zoysia japonica) by Bacillus subtilis SA-15: Identification of Active Compounds and Synergism with a Fungicide vol.8, pp.1, 2015, https://doi.org/10.3390/horticulturae8010034