• Title/Summary/Keyword: Zoysia grass

Search Result 76, Processing Time 0.022 seconds

Comparison of Green Color Retention of Zoysiagrass and Cool-season Grass under Multilayer System, USGA System, and Mono-layer System of Sports Field (스포츠용 다단구조, USGA구조 및 약식구조 지반에서 한국잔디 및 한지형 잔디의 녹색기간 비교)

  • Kim, Kyoung-Nam
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.342-353
    • /
    • 2016
  • This study was initiated to evaluate green color retention under three different soil systems. Several turfgrasses were evaluated in multi-layer, USGA, and mono-layer systems. Turfgrass entries were comprised of three cultivars of Korean lawngrass (Zoysia japonica Steud.) as warm-season grass (WSG) and three blends and three mixtures of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.) as cool-season grass (CSG). Significant differences were observed in visual turf color and green color retention among soil systems and turfgrasses. Both the multi-layer and USGA systems were highly associated with better color ratings and longer color retention, as compared with the mono-layer system. Seasonal variation of visual turf color greatly occurred from late December to early spring. CSG exhibited longer color retention than did WSG. The latter maintained green color for approximately 6 months, regardless of the soil system. Spring green-up of Korean lawngrass occurred from early to middle May, while it underwent discoloration from late October to early November. Among the CSGs green-up occurred between early March and early April and leaf color was maintained until middle December to early February. Therefore, the CSGs were green for 8.5 to 11 months, depending on turfgrass and soil system. The mean period of green color duration across all soil systems was approximately 10-11, 9-10 and 8.5-9.0 months for PR, KB and TF, respectively. As for the CSG mixtures, the greater the proportion of PR, the longer the green color retention, while the higher the proportion of TF, the shorter the color retention. There was greater variation in green color duration among the CSGs than the WSGs. Across soil systems, color retention differences of 2 to 6 days were observed for the Korean lawngrass, but 7 to 36 days for the CSGs. These results demonstrate that green color retention varied greatly according to soil systems and also among turfgrasses. Selections of turfgrass and soil system should be made using a concept-oriented approach, when establishing garden, park, soccer field, golf course and other sports field. Information obtained in this study can be used to select soil systems and turfgrasses based on the expected degree of leaf color retention.

Effect of Growth Regulators, Carbon Sources and Silver Nitrate on Callus Formation and Plant Regeneration of Turf Grass (잔디의 캘러스 형성 및 재분화에 끼치는 식물생장조절제, 탄소원 및 AgNO3의 영향)

  • Han, S.S.;Rim, Y.S.;Jeong, J.H.
    • Korean Journal of Weed Science
    • /
    • v.16 no.3
    • /
    • pp.221-229
    • /
    • 1996
  • This study was carried out to determine the effects of growth regulators, carbon sources and silver nitrate on callus formation and plant regeneration of turfgrass. The results were summarized as fallows : Callus from Korean lawngrass (Zoysia japonica Steud.) and pencross creeping bentgrass (Agrostis palustrir Huds.) induced better in MS medium than in N6 medium and by addition of 2,4-D than by that of NAA. Callus formation from Korean lawngrass and penncross creeping bentgrass was very effective at MS medium adding 1mg/L 2,4-D and at the medium adding 2mg/L 2,4-D, repectively. Growth of callus was good at MS medium containing 2mg/L 2,4-D+0.2mg/L NAA. Callus growth of Korean lawngrass and penncross creeping bentgrass was good when kinetin was added 0.2mg/L and 0.3mg/L, individually, to MS medium containg 2mg/L 2,4-D+0.2mg/L NAA. Regeneration rate from leaf and stock callus of Korean lawngrass was 44% at MS medium adding 2,4-D 2mg/L+NAA 0.2mg/L+kinetin 0.3mg/L and 32% at the medium containing 2,4-D 2mg/L+NAA 0.2mg/L+kinetin 0.3mg/L, each and that from leaf and stock callus of penncross creeping bentgrass was 80% and 67%, each, at the medium adding 2,4-D 2mg/l+NAA 0.2mg/L+kinetin 0.3mg/L. Regeneration rate of Korean lawngrass and penneross creeping bentgrass increased by 3 to 4% and by 10 to 16%, respectively, when added $AgNO_3$ 1~2mg/L to the above-mentioned regeneration medium.

  • PDF

Flowering Periods, Genetic Characteristics, and Cross-Pollination Rate of Zoysia spp. in Natural Open-Pollination (자연 방임수분 상태에서 한국잔디류의 개화기간, 유전특성 및 타가수분율)

  • Choi, Dong-Keun;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.13-24
    • /
    • 2008
  • This study was carried out to provide basic information for the breeding of zoysiagrass synthetic varieties. For estimation of flowering periods, genetic characteristics, and cross-pollination rate, 5 combinations of zoysiagrass breeding lines were compared. Days to stigma emergence and anther exertion were observed in the field to calculate overlapping dates for cross-fertilization. Harvested seed from cross breeding combinations were planted to compare genetic characteristics using morphological traits of progenies. These data were used for determination of 7 phenotypic inheritance types with 8 morphological traits. Cross-pollination rates in 3 combinations of zoysiagrasses were estimated by using lower part color of grass shoots. Cross-pollination rates of zoysiagrass ranged from 11.3$\sim$48.9%, which indicated that zoysiagrass is an allogamous plant. When zoysiagrass breeding lines are properly combined, they may result in valuable synthetic cultivars.

Comparison of Surface and Air Temperature depending on Cover Materials in Playground (운동장의 피복 유형별 표면 및 대기온도 비교)

  • Lee, Hak Hyeong;Kwon, Oh Gyung;Shin, Jin He;Kabir, Faisal Md.;Lee, Kang Su;Ryu, Sungpil;Lee, Dong Woon
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.71-75
    • /
    • 2015
  • Playground is frequently used for physical and sports activity by students as well as by common people, which is constructed with various cover materials on the ground. This research surveyed the surface temperature in Kyungpook National University Sangju campus playground which is covered with various cover materials [bare field, zoysiagrass (Zoysia japonica) turf field, urethane track, concrete field, epoxy field and artificial turf field] in Sangju, Gyeongsangbukdo, Korea. Temperature was measured 4 times per day at 09:00, 12:00, 15:00, and 18:00 from May to October 2014 in surface and 1 m height above the ground. Surface temperature was different, depending on cover materials and survey time. Bare field and zoysiagrass turf field was lower surface temperature than other sites. Higher surface temperature site was different depending on survey time. Urethane track and artificial turf field was hotter than other sites at 12 and 15 hours, however concrete and epoxy field was hot at 18 hours. One meter above ground temperature was the highest in artificial turf field except at 18 hours. So natural turf, zoysiagrass playground will increase the athletic performance by reduce the surface and above ground temperature.

Soil Microbial Community Analysis in Large Patch (Rhizoctonia solani AG2-2 IV) (갈색퍼짐병 발병토양의 미생물 군집 분석)

  • Lee, Jung Han;Min, Gyu Young;Shim, Gyu Yul;Jeon, Chang Wook;Choi, Su min;Han, Jeong Ji;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.124-128
    • /
    • 2015
  • Large patch, caused by Rhizoctonia solani AG2-2 IV, is a soil-born disease that is the most important of warm season turfgrass such as zoysia and Bermuda grass. This study was conducted to analysis of the soil microbial community structure on large patch. Center of the large patch (CLC), edge (CLE) and healthy (CLH) part of microbial communities were examined using metagenomics in Phylum level. Distribution trends of the rhizosphere microorganisms were similar to the order Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes, Gemmatimonadetes, Nitrospira, Cyanobactria and Verrucomicrobia in soil collections. Contrastively Actinobacteria was more 56% abundant in healthy part soil (16%) than in the center (9.28%) or edge (10.84%) parts. Taxonomic distributions were compared among the CLC, CLE and CLH, total 6,948 OTUs were detected in the CLC, 6,505 OTUs for the CLE and 5,537 OTUs were detected in the CLE. Distributions of Actinobacteria OTUs were appeared 615 OTUs in the CLC, 709 OTUs in the CLE and 891 OTUs in the CLH. Among Actinobacteria, 382 OTUs were overlapped in the all soils. Not matched OTUs of CLH (286 OTUs) was detected 23 times higher than CLC (91 OTUs) and CLE (126 OTUs).

Comparison of Turfgrass Density, Uniformity and Tiller Characteristics in Mixtures of Overseeded Warm-Season and Cool-Season Grasses (덧파종한 난지형 및 한지형 혼합 식생 잔디밭에서 잔디밀도, 균일도 및 분얼경 특성 비교)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.67-76
    • /
    • 2017
  • The study was initiated to evaluate the effects of overseeding warm-season grass (Zoysia japonica Steud.) with cool-season grasses (CSG) on turfgrass density, uniformity and tiller appearance and to determine turfgrass species and seeding rate applicable for a practical use. Treatments were comprised of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), tall fescue (TF, Festuca arundinacea Schreb.) and their mixtures. Overall turfgrass density and uniformity were much better with the overseeded treatments over the control. In early stage after overseeding, the greater the PR in treatments, the greater the turfgrass density and uniformity. But the higher the KB, the lower the density and uniformity. From the middle-stage evaluation, however, we observed the opposite results as compared with early-stage findings. Accordingly, the KB was highest in turfgrass density and uniformity, while the PR lowest. In regards of mixtures, both turfgrass density and uniformity were better with increased KB and decreased PR in overseeding rates. As for a medium-quality mixtures of Korean lawngrass with CSG, it would be the best choice to apply with KB at $50g\;m^{-2}$ and equal combination of KB, PR and TF by 1/3 in mixing at $75g\;m^{-2}$ in terms of sustainable density and uniformity.