• Title/Summary/Keyword: Zoosporangium germination

Search Result 7, Processing Time 0.016 seconds

Screening for Antagonistic Plants for Control of Phytophthora spp. in Soil (토양중(土壤中)의 Phytophthora spp. 방제(防除)를 위한 길항식물(桔抗植物)의 탐색)

  • Paik, Su-Bong
    • The Korean Journal of Mycology
    • /
    • v.17 no.1
    • /
    • pp.39-47
    • /
    • 1989
  • Among 100 species in 54 families of plants tested, leaf extracts from Allium cepa, Allium sativum, Malussieboldii, Reynoutria japonia and Rheum coreanum were inhibitory on mycelium growth of phytophthora spp.. Especially, Allium sativum and Malus sieboldii were strongly inhibitory. Allium sativum, Malussieboldii and Rhem coreanum were strongly inhibitory on zoosporangium germination of P. capsici. Malus sieboldii only were strongly inhibitory on zoosporangium germination of P. nicotiana and P. infestans.And Malus sieboldii were strongly effected on disease control of these pathogens. These results indicate the possibility of finding antagonistic plants in the nature for the control of certain pathogens in soil.

  • PDF

Characteristics of Phytophthora capsici Causing Pepper Phytophthora Blight Resistant to Metalaxyl (Metalaxyl에 대한 저항성 고추 역병균의 특성)

  • Lee, Soo-Min;Shin, Jin-Ho;Kim, Sun-Bo;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.283-289
    • /
    • 2009
  • Isolation frequency of resistant isolates of Phytophthora capsici to metalaxyl was reported to be 38.9% through the resistance monitoring for metalaxyl in P. capsici causing pepper Phytophthora blight. Metalaxyl was very effective to mycelium growth, while not to zoosporangium germination and zoospore release. $EC_{50}$ values of metalaxyl in the inhibition of mycelium growth were 0.204, 0.151, 0.379, and $0.215\;{\mu}g\;mL^{-1}$ against each isolate sensitive to the fungicide as P. capsici 06-119, 06-143, P08-7, and P08-31, respectively, whilst those were 5.242, 5.724, 6.621, and $5.377\;{\mu}g\;mL^{-1}$ in P. capsici 06-125, 06-155, P08-50, and P08-60. For the field fitness, several factors, which were mycelium growth, zoosporangium germination, zoospore release, virulence to pepper plants, and the zoosporangium and the oospore production, were investigated with 4 sensitive isolates and 4 resistant isolates. Between 2 groups differentiated by the sensitivity of metalaxyl, there was no significance in mycelium growth, zoosporangium germination, zoospore release, and virulence to pepper plants. However, the zoosporangium and the oospore production in each resistant isolate, which were related to survival of P. capsici in fields, were superior to those of sensitive isolates. Based on results of this study, it was suggested that the increase of the percentage of resistant isolates to metalaxyl resulted from the high capacities of the zoosporangium and the oospore production.

Screening for Antifungal Medicinal Plants Controlling the Soil Borne Pathogen, Pythium ultimum (토양병원균(土壤病原菌) Pythium ultimum 방제(防除)를 위한 항균성(抗菌性) 약용식물(藥用植物)의 탐색)

  • Paik, Su-Bong;Oh, Yeon-Sun
    • The Korean Journal of Mycology
    • /
    • v.18 no.2
    • /
    • pp.102-108
    • /
    • 1990
  • In order to find out the effect of medicinal plant extracts on germination of zoosporan-gium and mycelium growth of Pythium ultimum, this study was carried out. Among 28 species in 16 families of plants tested, plant extracts from 9 species were strongly inhibitory to zoosporan-gium germination of P. ultimum. Plant extracts from 3 species were strongly inhibitory to mycellium growth of P. ultimum. Especially, Paeonia suffruticosa was strongly inhibitory. P. suffruticosa was shown a strong control effect on damping-off of sesame by P. ultimum sesame, but no effect on cucumber. Seed germination of sesame and cucumber was shown phyto-alexin by extract of Phytolacca esculenta.

  • PDF

Isolation and Characterization of Burkholderia cepacia strain YJK2, Antagonistic Microorganism of Paprika Pathogens (파프리카 병원균들에 대한 길항미생물, Burkholderia cepacia strain YJK2의 분리 및 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.133-148
    • /
    • 2015
  • Although several adverse effects have been increased in recent years, synthetic agro-chemicals have been widely used to control diseases on paprika. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ2 isolated in this research belongs to a group of Burkholderia cepacia. Specially, 16S rDNA gene sequence of YKJ2 showed 99% of sequence similarity with B. cepacia. Observation through the optical microscope revealed that YKJ2 was effective on suppression of the spore germination and the hyphal growth of pathogens. YKJ2 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. On the basis of the results of this study, we propose that an antagonistic microorganism, B. cepacia, found in this study naming as "B. cepacia strain YKJ2" and has great potential as one of biological control agents against major diseases of paprika.

Comparison of Microbial Fungicides in Antagonistic Activities Related to the Biological Control of Phytophthora Blight in Chili Pepper Caused by Phytophthora capsici

  • Kim, Sang-Gyu;Jang, Ye-Lim;Kim, Hye-Young;Koh, Young-Jin;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.340-345
    • /
    • 2010
  • Two similar microbial fungicides (termed as MA and MB) developed in a Korean biopesticide company were analyzed and compared each other in their biocontrol activities against the phytophthora blight of chili pepper caused by Phytophthora capsici. MA and MB contained the microbe Paenibacillus polymyxa and Bacillus subtilis, respectively, with concentrations over those posted on the microbial products. In comparison of the isolated microbes (termed as MAP from MA and MBB from MB) in the antagonistic activities against P. capsici was effective, prominently against zoospore germination, while MBB only significantly inhibited the mycelia growth of the pathogen. Some effectiveness of MAP and MBB was noted in the inhibition of zoosporangium formation and zoospore release from zoosporangia; however, no such large difference between MAP and MBB was noted. In a pot experiment, MA reduced the severity of the phytophthora blight more than MB, suggesting that the disease control efficacy would be more attributable to the inhibition of zoospore germination than mycelia growth of P. capsici. These results also suggest that the similar microbes MA and MB targeting different points in the life cycle of the pathogen differ in the disease control efficacies. Therefore, to develop microbial fungicides it is required to examine the targeting points in the pathogen's life cycle as well as the action mode of antagonistic microorganisms.

Efficacy of Fluopicolide against Phytophthora capsici Causing Pepper Phytophthora Blight

  • Shin, Jin-Ho;Kim, Joo-Hyung;Kim, Hyung-Jo;Kang, Bumg-Wan;Kim, Kyeong-Tae;Lee, Jeong-Deug;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.367-371
    • /
    • 2010
  • In this study, we evaluated the efficacy of fluopicolide to inhibit Phytophthora capsici in vitro, and to control pepper Phytophthora blight in a greenhouse and pepper fields. Fluopicolide was tested on various developmental stages of P. capsici 06-143 (a sensitive isolate to metalaxyl) and JHAW1-2 (a resistant isolate to metalaxyl). Mycelial growth and zoosporangium germination of both isolates were completely inhibited at $4.0\;{\mu}g/ml$ of the fungicide in vitro. The $EC_{50}$ (effective concentrations reducing 50%) of P. capsici 06-143 against zoospore were $0.219\;{\mu}g/ml$, while those of JHAW1-2 were $3.829\;{\mu}g/ml$. When fluopicolide was applied at 100 and $1,000\;{\mu}g/ml$ 7 days before inoculation with P. capsici 06-143 in the greenhouse test, the disease was controlled completely until 6 days after inoculation. However, the curative effect of fluopicolide was not as much as the protective effect. When fluopicolide was applied by both soil drenching and foliar spraying, the treatments strongly protected pepper against the Phytophthora blight disease. Based on these results, fluopicolide can be a promising candidate for a fungicide to control P. capsici in the pepper fields.

The Isolation and Characterization of the Antagonistic Microorganisms, Serratia marcescens-YJK1, for Major Pathogens on Paprika (파프리카에 발생하는 주요 병원균에 대한 길항미생물, Serratia marcescens-YJK1, 분리와 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.855-868
    • /
    • 2014
  • Synthetic agro-chemicals have been widely used to control diseases on paprika but these days negative attention has been increasing to use of them because of several adverse effects. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ1 isolated in this research belongs to a group of Serratia marcescens. Specially, 16S rDNA gene sequence of YKJ1 showed 99% of sequence similarity with S. marcescens. Observation through the optical microscope revealed that YKJ1 suppressed the spore germination and the hyphal growth of pathogens. YKJ1 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. S. marcescens found in this study call as S. marcescens-YKJ1 and it may be valuable as one of biological control agents against major diseases of paprika in the future even though it is require to be tested with more study on field test.