• Title/Summary/Keyword: Zoom lens design

Search Result 66, Processing Time 0.021 seconds

Numerical Calculation for Autofocus of Zoom Lenses by Using Gaussian Brackets (가우스 괄호법을 이용한 줌 렌즈의 조출량에 대한 수치해석 계산법)

  • Jo, Jae-Heung;Lee, Do-Kyung;Lee, Sang-On;Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.166-174
    • /
    • 2009
  • When the object distance of a zoom lens with finite object distances is varied, we can fix the image at a fixed image plane by moving only one zoom lens group (autofocus group) without moving all zoom lens groups for the autofocus. We theoretically formulated and numerically calculated the moving distances of the autofocus group by using Gaussian brackets and a paraxial ray tracing method. The solutions of this method can be consistently and flexibly used in the initial design for the moving distance of autofocus group within these zoom loci in all types of zoom lens. Finally, in order to verify the usefulness of this method, we show that the moving distance of an autofocus group can be rapidly and diversely obtained in one example of $M_{5n}$ zoom lens type.

General Numerical Calculation Method for Paraxial Zoom Loci of Zoom Lenses with Finite Object Distance by Using Gaussian Bracket Method (가우스 괄호법을 이용한 유한 물점을 갖는 줌 렌즈에 대한 일반적인 수치해석적 근축광선 줌 궤적 추적)

  • Lee, Do-Kyung;Yoo, Nam-Jun;Jo, Jae-Heung;Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.156-165
    • /
    • 2009
  • We theoretically derive the set of general paraxial zoom locus equations for all zoom lens systems with finite object distance, including the infinite object distance case, by using the Gaussian bracket method and matrix representation of paraxial ray tracing. We make the zoom locus program by means of a numerical calculation method according to these equations in Visual Basic Language. Consequently, the solutions of this method can be consistently and flexibly used in all types of zoom lens in the step of initial design about zoom loci. Finally, in order to verify the justification and usefulness of this method, we show that two examples, such as $M_{4a}$ and $M_{4h}$ types of 4 groups, and one example, $M_{5n}$ type of 5 groups, which are very complicated zoom lens systems, can be rapidly and diversely traced through various interpolations by using this program.

Design of Two-group Zoom Lens System with Wide Angle of View Using Global Structure Function (전역구조함수를 사용한 광각 2군 줌 렌즈의 설계)

  • Kwon, Hyuk-Joon;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.319-327
    • /
    • 2009
  • We introduce a new design technique by treating a two-group zoom lens system with a wide angle of view. First, the concept of the global optimization is introduced in the initial design stage, and from this, the global design technique is completed by analyzing and summarizing large quantities of modern design data. That is, we define the global structure function to achieve a new conceptual design technique for global optimization. And the function is put in a simple form by referring lots of patent data, manipulated with other algebraic equations, and solved finally such that we obtain the global solution region. The global solution region corresponds to the global optimization and suggests insightful systematized directions for the design of two-group zoom lens systems. These directions are attractive compared to global optimization.

Evaluation of a Corrected Cam for an Interchangeable Lens with a Distance Window

  • Kim, Jin Woo;Ryu, Jae Myung;Jo, Jae Heung;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • Recently, the number of camera companies that produce commercializing interchangeable lens systems such as digital single lens reflex (DSLR) and compact system camera (CSC) lenses has been gradually increasing. These interchangeable lenses have various kinds of lenses with distinct specifications. In particular, the distance window among these specifications is the function most preferred by customers. Mechanical manual zoom and manual focus in these high end camera lenses with a distance window are in particular desirable specifications and are required for product quality. However, the AF lens group is linked to the zoom cam and moves. Because the AF lens group moves along with the object distance, we can not realize the distance window with only zoom locus calculation. In this paper, in order to solve the problem, we suggest an optical calculation method for a corrected AF zoom cam for an interchangeable lens with a distance window to achieve product differentiation and analyze the error in the calculation.

Design and Analysis of a 10× Optical Zoom System for an LWIR Camera

  • Ok, Chang-Min;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.574-581
    • /
    • 2014
  • This paper presents the design and evaluation of the optical zoom system for an LWIR camera. The 12.8operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through a paraxial design and optimization process, we have obtained the extended four-group inner-focus zoom system with focal lengths of 10 to 100 mm, which consists of the six lenses including four aspheric surfaces and two diffractive surfaces. The diffractive lenses were used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We have calculated the polychromatic integrated diffraction efficiency and the MTF drop generated by background noise. The f-number of the zoom system is F/1.4 at all positions. Fields of view are given by $51.28^{\circ}{\times}38.46^{\circ}$ at wide field and $5.50^{\circ}{\times}4.12^{\circ}$ at narrow field positions. In conclusion, this design procedure results in a $10{\times}$ compact zoom lens system useful for an LWIR camera.

Optical Design and Optimization of a Micro Zoom System with Liquid Lenses

  • Zhang, Wei;Li, Dan;Guo, Xin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.447-453
    • /
    • 2013
  • A micro zoom system without moving elements by use of two liquid lenses is designed and optimized in this paper. The zoom equations of the system composed of two liquid lenses are deduced. The structure parameters including radius and thickness of a conical double-liquid electrowetting based lens are analyzed and calculated. Because the liquid thickness varies non-linearly with the radius of the interface, it's very difficult to optimize a real liquid lens using commercial optical design software directly. Through the Application Programming Interface (API) of the optical design software CODE V, a zoom system with two real electrowetting based liquid lenses is modeled and optimized. A two-liquid-lens zoom system without moving elements, with a zoom factor of 1.8 and a compact structure of 10 mm is designed for illustration. This can be useful for the camera design of mobile phones, tablets and so on. And this paper presents a convenient way of designing and optimizing a zoom system including liquid lenses by commercial optical design software.

The design methods of Infrared Camera with Continuous zoom

  • Son, Seok-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, we propose an efficient design method for a thermal camera with continuous zoom based on the research and manufacturing experience of the thermal camera. In addition, it is divided into system design method, optical design method, mechanical design method, and electronic design method. First, we propose an effective NUC compensation method and a lens-specific sensitivity design method in terms of system. Second, we propose a zoom trajectory design method considering the temperature effect on the optical aspect. Third, it suggests the minimization of optical axis shaking between magnification conversion in terms of mechanism. Finally, we propose a lens-specific temperature compensation method and a speed conversion algorithm according to the zoom interval as an electronic aspect.

Ultra-Compact Zoom Lens Design for Phone Camera Using Hybrid Lens System (복합렌즈계를 이용한 폰 카메라용 초소형 줌렌즈 설계)

  • Park, Sung-Chan;You, Byoung-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.349-359
    • /
    • 2008
  • For an inner-focusing 3-groups zoom lens system, this study suggests a new initial design method which applies the process that changes thin lenses into thick ones effectively and quickly, using the hybrid lens system(thin lens+thick lens). In other words, the hybrid lens system is the semi-automatic design process that makes the thin lens of one group change into a thick one while the other groups are composed of thin lenses. Keeping the total power of the system fixed, the power of each group and the distance between principal planes can be fixed. Of course, the other groups composed of thin lenses could be changed into thick lenses sequentially by this process. This design conception results in the 1/4" 5 M inner-focusing 3-groups 2x zoom lens system satisfying the specifications and performances of zoom lens for phone cameras. Also aspherization on lens elements of glass and plastic material enhanced the resolution and reduced the lens size. As a result, we have an ultra-compact inner-focusing 3-groups 2x zoom lens system for a phone camera, with a slim size with TTL of 9.8 mm.

Analytic Calculation Method of Zoom Loci for Zoom Lens System with Infinite Object Distance (무한물점용 줌 렌즈 광학계의 줌 궤적에 대한 해석적 계산법)

  • Oh, Jeong Hyo;Ryu, Jae Myung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.125-134
    • /
    • 2013
  • In case of the optical camera system with an infinite object distance, optical designs different from previous systems are required to speed up the auto-focus. As the number of lens groups is increased due to this, the conventional analytic method found it difficult to calculate the locus, and even the one-step advanced calculation method also had the trouble of taking a lot of time. In this paper, we suggested an analytic method for calculating the zoom loci by analyzing movement of one or two groups for situations corresponding to the given back focal length and effective focal length after taking a spline interpolation for each lens group. With this method, we would not only calculate the analytic zoom loci without iterations in every optical system without placing a limit on the group number at the zoom lens systems with the infinite object distance, but we would also show the utilities of this method through many examples.

Design of a 10× Zoom Lens with an Expander for an MWIR Camera Using Athermal Material Composition Method (비열화 소재 구성 방법을 이용한 중적외선 카메라용 확장형 10배 줌 렌즈 설계)

  • Ryu, Tae-Sik;Park, Sung-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.287-294
    • /
    • 2022
  • This study presents a method for designing an athermal middle wavelength infrared (MWIR) zoom lens with the iterative selection of material compositions on an athermal glass map. The optical properties of glass for MWIR are generally very sensitive to temperature, compared with visible glass. To compensate for focus error due to temperature change, the non-athermalized zoom system requires a large amount of movement of a compensator, which results in an unstable zoom system. To solve this problem, the material compositions for an athermal zoom lens have effectively been obtained using the thermal aberration correction process analytically on an athermal glass map. An expander lens is used to enlarge the focal lengths of an original main zoom lens two times. Finally, while this expander is attached to an original athermal zoom system, the final zoom system equipped with this expander doubles the focal length ranges and has stable performance over a specified temperature range.