• Title/Summary/Keyword: Zone mode

Search Result 380, Processing Time 0.029 seconds

Fabrication of IBAD-MgO template by continuous reel-to-reel process (연속 reel-to-reel 공정을 이용한 IBAD-MgO template 제조)

  • Ko, K.P.;Ha, H.S.;Kim, H.K.;Yu, K.K.;Ko, R.K.;Moon, S.H.;Oh, S.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • Highly textured MgO template by ion-beam-assisted deposition(IBAD) was successfully fabricated using a continuous reel-to-reel(R2R) mode. To enlarge the deposition area, the previous IBAD system was modified into the system with 14-pass and five heating zone. Every processing step was carried out using this multi-turn IBAD system. The overall process consists of R2R electropolishing of a hastelloy C276 tape, deposition of $Al_2O_3$ diffusion barrier, $Y_2O_3$ seed layer, IBAD-MgO and homoepi-MgO layer. The IBAD-MgO templates were fabricated using the IBAD system with 216 cm-length deposition zone and 32 cm diameter ion source. The texture of MgO films developed during the IBAD process was monitored by in-situ reflection high energy electron diffraction(RHEED) to optimize the IBAD process. Recently, 100 m long IBAD-MgO tape with in-plane texture of $\Delta{\phi}<10^{\circ}$ was successfully fabricated using the modified IBAD system. In this report, the detailed deposition condition of getting a long length IBAD-MgO template with a good epitaxy is described.

Synergistic bond properties of new steel fibers with rounded-end from carbon nanotubes reinforced ultra-high performance concrete matrix

  • Nguyen Dinh Trung;Dinh Tran Ngoc Huy;Dmitry Olegovich Bokov;Maria Jade Catalan Opulencia;Fahad Alsaikhan;Irfan Ahmad;Guljakhan Karlibaeva
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.363-373
    • /
    • 2023
  • A novel type of steel fiber with a rounded-end shape is presented to improve the bonding behavior of fibers with Carbon Nanotubes (CNT)-reinforced Ultra-High Performance Concrete (UHPC) matrix. For this purpose, by performing a parametric study and using the nonlinear finite element method, the impact of geometric characteristics of the fiber end on its bonding behavior with UHPC has been studied. The cohesive zone model investigates the interface between the fibers and the cement matrix. The mechanical properties of the cohesive zone model are determined by calibrating the finite element results and the experimental fiber pull-out test. Also, the results are evaluated with the straight steel fibers outcomes. Using the novel presented fibers, the bond strength has significantly improved compared to the straight steel fibers. The new proposed fibers increase bond strength by 1.1 times for the same diameter of fibers. By creating fillet at the contact area between the rounded end and the fiber, bond strength is significantly improved, the maximum fiber capacity is reachable, and the pull-out occurs in the form of fracture and tearing of the fibers, which is the most desirable bonding mode for fibers. This also improves the energy absorbed by the fibers and is 4.4 times more than the corresponding straight fibers.

Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete (라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구)

  • Kim, Seong-Hwan;Yun, Kyong-Ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.503-510
    • /
    • 2009
  • Latex modified concrete (LMC) is a successful polymer-portland cement concretes, which have been developed and used for many years, in overlaying bridge decks and resurfacing industrial floors. The excellent bond strength to substrate, easy application and high resistance to impact, abrasion, wear, aggressive chemicals and freeze-thaw deterioration have made this material used widely. The objective of this study was to determine experimentally the load-deflection response and ultimate strength of reinforced RC beams. The cracking patterns and the mode of failure were observed. Because of excellent bond strength and repairing effects, the RC beams repaired by LMC at compression or tension zone showed over 100% recovery from damaged structures. The RC beams overlaid by LMC showed significant improvement at load carrying capacity as overlay thickness increases. However, the beams repaired of tension zone without shear stirrups almost showed no strengthen effect, and indicated an interfacial failures. The interfacial behavior was estimated by numerical method adopting the concept of shear flow.

Experimental and numerical study on mechanical behavior of RC shear walls with precast steel-concrete composite module in nuclear power plant

  • Haitao Xu;Jinbin Xu;Zhanfa Dong;Zhixin Ding;Mingxin Bai;Xiaodong Du;Dayang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2352-2366
    • /
    • 2024
  • Reinforced concrete (RC) shear walls with precast steel-concrete composite modular (PSCCM) are strongly recommended in the structural design of nuclear power plants due to the need for a large number of process pipeline crossings and industrial construction. However, the effect of the PSCCM on the mechanical behavior of the whole RC shear wall is still unknown and has received little attention. In this study, three 1:3 scaled specimens, one traditional shear wall specimen (TW) and two shear wall specimens with the PSCCM (PW1, PW2), were designed and investigated under cyclic loadings. The failure mode, hysteretic curve, energy dissipation, stiffness and strength degradations were then comparatively investigated to reveal the effect of the PSCCM. Furthermore, numerical models of the RC shear wall with different PSCCM distributions were analyzed. The results show that the shear wall with the PSCCM has comparable mechanical properties with the traditional shear wall, which can be further improved by adding reinforced concrete constraints on both sides of the shear wall. The accumulated energy dissipation of the PW2 is higher than that of the TW and PW1 by 98.7 % and 60.0 %. The failure of the shear wall with the PSCCM is mainly concentrated in the reinforced concrete wall below the PSCCM, while the PSCCM maintains an elastic working state as a whole. Shear walls with the PSCCM arranged in the high stress zone will have a higher load-bearing capacity and lateral stiffness, but will suffer a higher risk of failure. The PSCCM in the low stress zone is always in an elastic working state.

Security Problem of National Major Facility's Parking Lot and its Improvement Method -Focused on Doonchi(Waterside) Parking Lot of National (국가중요시설의 주차장 보안의 문제점과 개선방안: 국회둔치주차장을 중심으로)

  • Lee, Sang-Hun;Lee, Sang-Yeol
    • Korean Security Journal
    • /
    • no.50
    • /
    • pp.61-87
    • /
    • 2017
  • National Assembly is a constitutional institution that is required to first consult the will of the people and it should do its effort continuously so that security of citizens using parking lot would be enhanced at the same time while improving parking service in order to increase customer satisfaction of the people. Under this recognition, in this study, Doonchi parking lot of National Assembly under consigned management was first reviewed in a perspective of criminal prevention through environmental design(CPTED) and particularly, fence installation and reinforcement work for securing 'territoriality' and operation of all round shooting camera and installation of No-trespassing warning board at entrance were suggested. Second, it was recommended to change independent control system in which CCTV security system of National Assembly Doonchi parking lot is operated separately from National Assembly safety situation room and integrate it with National Assembly safety situation room(revised to double safety system) and performance of CCTV camera was made to be increased to over 2m. In addition, video recording mode was converted to NVR mode for application to IP camera in the future and in order to avoid dead zone of security monitoring area and based on site inspection result, addition 3 places of newly installing CCTV were indicated. Third, it was recommended to introduce parking fare billing and management system through unmanned equipment in parking lot management and operation.(specialized management of professional parking service provider was reviewed). By doing so, risk of cash handling by charging personnel was removed by reducing current 7 working personnel to 3 and particularly, by converting parking lot management mode being operated temporarily from 9 A.M. to 9 P.M. at present to 24 hours operation mode and providing more specialized parking service, citizens visiting National Assembly were provided with convenience and image of National Assembly was also enhanced. This study was carried out in parallel with various literature and case studies, including data from the Office of the Defense Protection in the National Assembly.

  • PDF

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screens Doors are Installed - Analysis on Smoke Control Performance by Fans equipped in Tunnel (스크린도어가 설치된 대심도 지하역사의 제연 실험 - 터널 송풍기에 의한 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.721-736
    • /
    • 2019
  • In this paper, the behavior of the fire smoke due to the operation of the ventilation systems when the fire occurred in the underground station (6 basement floors) and the tunnel at the great depth was measured. Fire smoke was generated by using a smoke generator which realized heat buoyancy effect by using hot air blower. The two locations of the fire were selected on the platform and on the platform of the tunnel located outside the screen door. A ventilation mode is generally used in which smoke is exhausted through a vent hole provided in a platform when a platform fire occurs. The tests were performed by operating the exhaust through the ventilation holes of the tunnel part located at both ends of the platform. The smoke density and the wind speed/velocity were measured at various positions, and the videos were taken to analyze the movement and smoke of the smoke. In both cases for fire inside the platform and in the railway tunnel, due to the ventilation mode operation of the fan for the platform and the exhaust of the fans in the tunnel smoke were well exhausted and the smoke propagation to the area near the smoke zone was suppressed. The smoke-control mode, which is applied to both fans for the platform and fans for in the tunnel at both ends of the platform, can provide a safer evacuation environment to the passengers from the fire smoke when the platform fire or fire train stops.

A Study on the Development of 3D Virtual Reality Campus Tour System for the Adaptation of University Life to Freshmen in Non-face-to-face Situation - Autonomous Operation of Campus Surrounding Environment and University Information Guide Screen Design Using Visual Focus Movement - (비대면 상황에서 신입생 대학생활적응을 위한 3차원 가상현실 캠퍼스 투어시스템 개발연구 - 시야초점의 움직임을 활용한 캠퍼스주변 환경의 자유로운 이동과 대학정보안내화면 GUI설계 -)

  • Lim, Jang-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.3
    • /
    • pp.59-75
    • /
    • 2021
  • This study aims to establish a foundation for autonomous driving on campus and communication of abundant university information in the HCI environment in a VR environment where college freshmen can freely travel around campus facilities. The purpose of this study is to develop a three-dimensional VR-style campus tour system to establish a media environment to provide abundant university information guidance services to freshmen in non-face-to-face situations. This study designed a three-dimensional virtual reality campus tour system to solve the problem of discontinuity in which VR360 filming space does not lead to space like reality, and to solve many problems of expertise in VR technology by constructing an integrated production environment of tour system. We aim to solve the problem of inefficiency, which requires a large amount of momentum in virtual space, by constructing a GUI that utilizes the motion of the field of view focus. The campus environment was designed as a three-dimensional virtual reality using a three-dimensional graphic design. In non-face-to-face situations, college freshmen freely transformed the HMD VR device, smartphone, FPS operation mode of the gyroscope sensor. The design elements of the three-dimensional virtual reality campus tour system were classified as ①Visualization of factual experiences, ②Continuity of space movement, ③Operation, automatic operation mode, ④Natural landscape animation, ⑤Animation according to wind direction, ⑥Actual space movement mode, ⑦Informatization of spatial understanding, ⑧GUI by experience environment, ⑨Text GUI by building, ⑩VR360, 3D360 Studio Environment, ⑪Three-dimensional virtual space coupling block module, ⑫3D360-3D Virtual Space Transmedia Zone, ⑬Transformable GUI(VR Device Dual Viewer-Gyro Sensor Full Viewer-FPS Operation Viewer) and an integrated production environment was established with each element. It is launched online (http://vautu.com/u1) by constructing a GUI for free driving mode and college information screens to adapt to college life for freshmen, and designing an environment that can be used simultaneously by current media such as PCs, Android, and iPads. Therefore, it conducted user research, held a development presentation, a forum on excellence in university innovation support projects, and applied it as a system on the website of a particular university. College freshmen will be able to experience university information directly from the web and app to the virtual reality campus environment.

A Study of Characteristics on the Dissimilar Metals (ASTM Type 316L - Carbon Steel : ASTM A516-70) Welds Made with FCA Multiple Layer Welding (스테인리스강(ASTM Type 316L)과 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성에 대한 연구)

  • Kim, Se Cheol;Hyun, Jun Hyeok;Shin, Tae Woo;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.69-76
    • /
    • 2016
  • Characteristics of dissimilar metal welds between ASTM Type 316L and carbon steel ASTM A516 Gr.70 made with FCAW were evaluated in terms of microstructure, ferrite content, EDS analysis, hardness, tensile strength, impact toughness and corrosion resistance. Three heat inputs of 10.4, 16.9, 23.4kJ/cm were employed to make joints of dissimilar metals with E309LMoT1-1 wire. Microstructure of dissimilar weld metals consisted of mostly vermicular type of ${\delta}$-ferrite and some lathy type of ${\delta}$-ferrite, and ${\delta}$-ferrite was transformed into globular type in reheated zone. In all conditions, weld metals were solidified on FA solidification mode. Based on the EDS analysis of weld metals, All Creq/Nieq values were in the range of FA solidification mode, and it was decreased with increasing heat inputs whereas it was increased with increasing layers. The amount of ${\delta}$-ferrite was decreased with increasing heat input due to the difference of cooling rate, and it was increased with increasing layers. Accordingly, hardness and tensile strength of dissimilar metals weld joints was decreased with increasing heat input while impact energy was increased with increasing heat input. Corrosion test of dissimilar metals weld joints showed that weight gain rate of heat input 10.4kJ/cm was the greatest, and that of three heat inputs became constant after certain time.

A Study of Characteristics on the Dissimilar Metals (STS 316L - Carbon Steel: ASTM A516-70) Welds made with GTAW (스테인리스강 STS 316L과 탄소강 A516-70의 이종금속 GTA 용접부 특성에 대한 연구)

  • Kim, Se Cheol;Shin, Tae Woo;Moon, In Joon;Jang, Bok Su;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.37-43
    • /
    • 2015
  • Characteristics of dissimilar metal welds between STS 316L and carbon steel ASTM A516 Gr.70 made with GTAW have been evaluated in terms of microstructure, ferrite content, chemical analysis, hardness and corrosion resistance. Three heat inputs of 9.00, 11.25, 13.00kJ/cm were employed to make joints of dissimilar metals with ER309 wire. Based on microstructural examination, the amount of vermicular type of ${\delta}$-ferrite was increased with increasing heat input due to the increase of Creq/Nieq in the second layer of welds. Based on the EDX analysis of weld metals, Cr and Ni content in the 2nd layer increased while those content in the first layer of welds decreased with heat inputs. Cellular solidification mode in the 1st layer and dendritic solidification mode in the 2nd layer due to different cooling rates were prevailed, respectively. Heat affected zone which formed hard microstructure showed higher hardness than the weld metal. The salt spray test of dissimilar metals weld joints showed that the carbon steel surfaces only corroded. The weight loss rate due to corrosion increased up to 100hours but it decreased above 100 hours. There was little difference in the weight loss caused by corrosion regardless of heat inputs.

Effects of temperature on the local fracture toughness behavior of Chinese SA508-III welded joint

  • Li, Xiangqing;Ding, Zhenyu;Liu, Chang;Bao, Shiyi;Qian, Hao;Xie, Yongcheng;Gao, Zengliang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1732-1741
    • /
    • 2020
  • The structural integrity of welded joints in the reactor pressure vessel (RPV) is directly related to the safety of nuclear power plants. The RPV is made from SA508-III steel in a pressurized water reactor. In this study, we investigated the effects of temperature on the tensile and fracture toughness properties of Chinese SA508-III welded joint in different sampling areas in order to provide reference data for structural integrity assessments of RPVs. The specimens used in tensile and fracture toughness tests were fabricated from the base metal (BM), weld metal (WM), and the heat-affected zone (HAZ) in the welded joint. The representative testing temperatures included the ambient temperature (20 ℃), upper shelf temperature (100 ℃), and service temperature (320 ℃). The results showed that temperature greatly affected the fracture toughness (JIC) values for the SA508-III welded joint. The JIC values for BM and HAZ both decreased remarkably from 20 ℃ to 320 ℃. The fracture morphologies showed that the BM and HAZ in the welded joint exhibited fully ductile fracture at 20 ℃, whereas partial cleavage fracture was mixed in ductile fracture mode at 100 ℃ and 320 ℃. The WM exhibited the ductile and cleavage fracture mixed mode at various temperatures, and the JIC values showed slight changes.