• Title/Summary/Keyword: ZnS thin film

Search Result 417, Processing Time 0.039 seconds

The Optical Properties of $ZnS/Na_3AlF_6$ Multi-layer Thin Films with Different Optical Thickness ($ZnS/Na_3AlF_6$ 다층박막의 광학적 두께 변화에 따른 광특성)

  • Jang, Gang-Jae;Jang, Geon-Ik;Lee, Nam-Il;Im, Gwang-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.128-129
    • /
    • 2007
  • $ZnS/Na_3AlF_6$ multi-layer thin film were produced by evaporation system. ZnS were selected as a high refractive index material and $Na_3AlF_6$ were selected as low refractive index material. Optical properties including color effect were systematically studied in terms of different optical thickness by spectrophotometer. In oder to compare with experimental data, the Essential Macleod Program(EMP) was adopted that simulation program. The thin film consisting of $ZnS/Na_3AlF_6$ multi-layer show the wave length of $530{\sim}600nm$, typically color range between purple, blue, green. It was confirmed that this experimental result was well matched with simulation data.

  • PDF

3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography (Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작)

  • Jo, Eunjin;Gang, Myeng Gil;Shin, hyeong ho;Yun, Jae Ho;Moon, Jong-ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

Optimization of CdS buffer layers for $Cu_2ZnSnSe_4$ thin-film applications ($Cu_2ZnSnSe_4$ 태양전지의 적용을 위한 최적화 된 CdS 버퍼층 연구)

  • Kim, Gee-Yeong;Jeong, Ah-Reum;Jo, William
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.400-403
    • /
    • 2012
  • $Cu_2ZnSnSe_4$(CZTSe) is emerged as a promising material for thin-film solar cells because of non-toxic, inexpensive and earth abundant more than $Cu(In,Ga)Se_2$ materials. For fabricating compound semiconductor thin-film solar cells, CdS is widely used for a buffer layer which fabricated by a chemical bath deposition method (CBD). Through the experiment, we controlled deposition temperature and mol ratio of solution conditions to find the proper grain 크기 and exact composition. The optimum CdS layers were characterized in terms of surface morphology by using a scanning electron microscope (SEM) and atomic force microscope (AFM). The optimized CdS layer process was applied on CZTSe thin-films. The thickness of buffer layer related with device performance of solar cells which controlled by deposition time. Local surface potential of CdS/CZTSe thin-films was investigated by Kelvin probe force microscopy (KPFM). From these results, we can deduce local electric properties with different thickness of buffer layer on CZTSe thin-films. Therefore, we investigated the effect of CdS buffer layer thickness on the CZTSe thin-films for decreasing device losses. From this study, we can suggest buffer layer thickness which contributes to efficiencies and device performance of CZTSe thin-film solar cells.

  • PDF

Properties of AZO Thin Film deposited on the PES Substrate (PES 기판상에 증착된 AZO 박막의 특성)

  • Kim, Sang-Mo;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1072-1076
    • /
    • 2007
  • We prepared the Al doped ZnO (AZO) thin film on polyethersulfon (PES) without any substrate heating by Facing Targets Sputtering (FTS) system. FTS system has two different facing targets. One is ZnO doped the content of Al 2 wt% and the other is Zn in order to decrease resistivity. The electrical, structural and optical properties of AZO thin films were investigated. To evaluate the as-deposited thin film properties, we employed four-point probe (CMT-R100nw, Changmin), Surface profiler (Alpha-step, Tencor), UV/VIS spectrometer (HP), X-ray diffractometer (XRD, Rigaku) and Field Emission Scanning Electron Microscopy (FESEM, Hitachi S-4700). As a result, We obtained that AZO thin film deposited on PES substrate at a DC Power of 150 W, working pressure of 1 mTorr and $O_2$ gas flow ratio of 0.2 exhibited the resistivity of $4.2{\times}10^{-4}\;[{\Omega}cm]$ and the optical transmittance of about 85 % in the visible range.

The Properties of ZnS:Mn AC TFEL Device with $BaTiO_3$/$Si_3$$N_4$ Insulating Thin Film ($BaTiO_3$/$Si_3$$N_4$ 이중절연막 구조의 교류구동형 ZnS:Mn 박막 EL 표시 조자의 특성)

  • 송만호;윤기현;이윤희;한택상;오명환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.121-127
    • /
    • 1994
  • The capability for application of rf magnetron sputterred and post annealed BaTiO$_{3}$ thin films in dielectrics AC drived TFELD(thin film electroluminescent device) was investigated. The dielectric constant of the thin films slightly increased up to about 25 with increase fothe post annealing temperature in the range of 210$^{\circ}C$-480$^{\circ}C$. The dielectric loss was about 0.005-0.01 except for the high frequency range above 100kHz and nearly independent on post annealing temperature. The BaTiO$_{3}$ thin film used for TFELD was annealed at 480.deg. C and Si$_{3}$N$_{4}$ thin film was inserted between BaTiO$_{3}$, lower dielecrics and ZnS:Mn, phosphor layer for stable driving of the device and for fear of interdiffusion. Regardless of the frequency of the applied sine wave voltage, the threshold voltage of the prepared TFELD was 65volt and saturated brightness was about 3000cd/m$^{2}$ at 130volt(2kHz sine wave), 65volt above V$_{TH}$.

  • PDF

Effects of Growth Conditions on Structural and Optical Properties of ZnS Nanoclusters (용액성장법의 성장조건이 ZnS 나노클러스터의 구조적, 광학적 특성에 미치는 영향)

  • 이상욱;이종원;조성룡;김선태;박인용;최용대
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.558-561
    • /
    • 2001
  • In this study, the ZnS nanosized thin films were grown by the solution growth technique (SGT), and their structural and optical properties were examined. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). With decreasing growth temperature and decreasing concentration of precursor solution, the surface morphology of film was found to be improved. In particular, this is the first time that the surface morphology dependence of ZnS film grown by SGT on the ammonia concentration is reported. The energy band gaps of samples were shown to vary from 3.69 eV to 3.91 eV, demonstrating that the quantum size effect of SGT grown ZnS is remarkable. Photoluminescence (PL) peaks were observed at the positions corresponding to the lower energy than that to energy band gap, illustrating that the surface states were induced by the ultra-fineness of grains in ZnS films.

  • PDF

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Hyangsook;Bang, Jinju;Lee, Kijung;Kang, Jongwuk;Hong, Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Electrical properties of ZnO transparent conducting film fabricated by the sputtering method (스퍼터링법에 의한 ZnO 투명전도막의 제작과 전기적 특성)

  • Jeong, Woon-Jo;Cho, Jae-Cheol;Jeong, Yong-Kun;Yoo, Yong-Tek
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.49-55
    • /
    • 1997
  • ZnO thin film had been deposited on the glass by sputtering method, and investigated by optical and electrical properties. When the rf power was 180W and sputtering pressure was $1{\times}10^{-3}$Torr at room temperature, thin lam deposited had strongly oriented c-axis and the lowest resistivity($1{\times}10^{-4}{\Omega}{\cdot}cm$), and then carrier concentration and Hall mobility were $6.27{\times}10^{20}cm^{-3}$ and $22.04cm^{2}/V{\cdot}s$, respectively. Transmittance of ZnO thin film in visible range was above 90%, and this thin film cut of the ultraviolet range below 320nm and the infrared range above 850nm. And after annealing in hydrogen atmosphere, the resistivity of ZnO thin film was somewhat decreased, while obtained as stable state.

  • PDF

The Characteristic on Electrical Resistivity of Zno film by Ramped method (선택적 증착에 의해서 제작한 ZnO 박막의 전기저항률 특성)

  • Lee, Woo-Sun;Choi, Kwon-Woo;Cho, Joon-Ho;Park, Jin-Seong;Seo, Yong-Jin;Kim, Sang-Yong;Chung, Yong-Ho;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.26-29
    • /
    • 2001
  • ZnO thin film had been deposited on the glass by Evaporation Ramped method. and electrical and resistivity were investigated. Evaporation gas($O_{2}$,) pressure was 10mTorr~100mTorr, chamber pressure was $2{\times}10^{-5}$, and then ZnO film were deposited. AI-doped ZnO thin film had the lowest resistivity ($1{\times}10^{4}\;{\Omega}{\cdot}cm$), and then carrier concentration and Hall mobility were$6.27{\times}10^{20}\;cm^{3}$ and $22.04 cm^{2}/V{\cdot}s$, respectively. When ZnO film had been deposited by Ramp6ed method compared with normal method and investigated resistivity.

  • PDF

Characterization of ZnO Thin Films prepared by Pulsed Laser Deposition Technique (PLD 기술로 제작된 ZnO 박막의 특성)

  • No, In-Jun;Shin, Paik-Kyun;Lee, Neung-Heon;Kim, Yong-Hyuk;Ji, Seung-Han;Lee, Sang-Hee;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1404-1405
    • /
    • 2006
  • Transparent ZnO thin films were deposited on quartz substrates by a KrF pulsed laser deposition (PLD) technique with different process conditions such as substrate temperature ($T_s$) and oxygen ambient pressure ($pO_2$). Surface morphology, crystal structure, and electrical properties of the ZnO films were investigated in order to characterize their thin film properties. The pulsed laser deposited ZnO films showed highly c-oriented crystalline structures depending on the process conditions: the highest FWHM (Full Width Half Maximum) value of (002) peak was observed for the ZnO film prepared at $T_{s}=550^{\circ}C$, $pO_2$=5mTorr and laser fluence of $2J/cm^2$.

  • PDF