• Title/Summary/Keyword: ZnS substrate

Search Result 301, Processing Time 0.028 seconds

Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.318-325
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

Fabrication and Physical Properties of Heterojunction Solar Cell (II-VI) of $n-Cd_{1-x}Zn_xS/p-Si$ (이종접합 태양전지 (II-VI)의 제작과 물성에 대한 연구($n-Cd_{1-x}Zn_xS/p-Si$ 태양전지를 중심으로))

  • Lee, Soo-Il;Kim, Byung-Chul;Seo, Dong-Joo;Choi, Seong-Hyu;Hong, Kwang-Joon;You, Sang-Ha
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 1988
  • Heterojunction solar cells of $n-Cd_{1-x}Zn_xS/p-Si$ were fabricated by solution growth technique. The crystal structure, spectral response, surface morphology, and I-V characteristics of the $n-Cd_{1-x}Zn_xS/p-Si$ heterojunction solar cells were studied. The $Cd_{1-x}Zn_xS$ layer deposited on a silicon substrate (111) were found to be a cubic structure with the crystal orientation (111), (220) of the CdS and to be a hexagonal structure with crystal orientation (100) of the ZnS. The open-circuit voltage, short-circuit current, fill factor, and conversion efficiency of $n-Cd_{1-x}Zn_xS/p-Si$ heterojunction solar cell under $100mW/cm^2$ illumination were found to be 0.43V, 38mA. 0.76, and 12.4%, respectively.

  • PDF

Electrodeposition of Ternary CdZnS Semiconductor Thin Films Using a S-Modified Polycrystalline Au Electrode

  • Ham, Sun-Young;Cho, Se-Jin;Lee, Ung-Ki;Jeon, So-Yeon;Shin, Ji-Cheol;Myung, No-Seung;Paeng, Ki-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.262-264
    • /
    • 2007
  • This paper describes a two-step approach for the electrochemical deposition of CdZnS thin films on the polycrystalline Au electrode. Initially, an Au substrate is electrochemically modified with a sulfur layer. In the second step, the layer is electroreduced to $S^{2-}$ in the electrolyte dosed with the requisite amount of $Cd^{2+}$ and $Zn^{2+}$ ions to generate CdZnS films in situ. This approach was validated using a combination of linear sweep voltammetry and electrochemical quartz crystal microgravimetry. Thus synthesized CdZnS thin films have different composition depending on the composition of electrolytes. CdZnS thin films are characterized by energy-dispersive X-ray analysis and Raman spectroscopy.

Effect of Ga-doping on the properties of ZnO films grown on glass substrate at room temperature by radio frequency magnetron sputtering (RF 마그네트론 스퍼터링 방법으로 상온에서 유리기판 위에 성장시킨 ZnO의 성질에 미치는 Ga 도핑 효과)

  • Kim, G.C.;Lee, J.S.;Lee, S.K.;Kim, D.H.;Lee, S.H.;Moon, J.H.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • We present the effect of Ga-doping on the electrical, structural and optical properties of ZnO layers with a thickness of ${\sim}500nm$ deposited on glass substrates. Polycrystalline ZnO and Ga-doped ZnO (GZO) layers were deposited by radio frequency (rf) magnetron sputtering at room temperature. Based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) data, the crystalline quality of Ga-doped ZnO film was improved and GZO film has a preferred orientation along with the (002) crystal direction. The transmittance of the GZO film was enhanced by 10% in the visible region from that of the ZnO film. From photoluminescence (PL) data, the ratio of intensity of near band edge (NBE) emission to deep level (DL) emission was as high as 2.65:1 and 1.27:1 in the GZO and ZnO films, respectively. The res istivities of GZO and ZnO films were measured to be 1.27 and 1.61 $\Omega{\cdot}cm$, respectively. The carrier concentrations of ZnO and GZO film were approximately 1018 and 1020 $cm^2$/Vs, respectively. Based on our experimental results, the Ga-doping improves the electrical, structural and optical properties of ZnO film with potential application.

The optical properties of ZnS/$Na_3AlF_6$/ZnS multi-layered thin film with Co reflection layer (ZnS/$Na_3AlF_6$/ZnS 박막의 Cu 반사층을 이용한 광 특성)

  • Kim, Jun-Sik;Jang, Gun-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.322-323
    • /
    • 2008
  • Multi layered thin films with ZnS/$Na_3AlF_6$/ZnS were deposited on glass substrate by thermal evaporator precess and simulated by using EMP(Essential Macleod Program). EMP is a comprehensive software package to design and analyse the optical characteristics of multi-layered thin film. ZnS and $Na_3AlF_6$ were selected as a high refractive index and low refractive index material respectively. Additionally Cu was chosen as mid reflective material. Optical properties including color effect were systematically studied. in terms of different optical thickness of low refractive index material. The optical thickness of $Na_3AlF_6$ was changed as 0.25, 0.5, 0.75 and $1.0\lambda$. The film with 0.25, 0.5, 0.75 and $1.0\lambda$. of optical thickness showed mixed color range between bluish green and red purple, yellowish green and bluish green, purple and mixed color range of green and purple respectively.

  • PDF

Electrical characteristics of a ZnO nanowire-based Field Effect Transistor on a flexible plastic substrate (유연한 플라스틱 기판 위에서의 ZnO 나노선 FET소자의 전기적 특성)

  • Kang, Jeong-Min;Keem, Ki-Hyun;Youn, Chang-Jun;Yeom, Dong-Hyuk;Jeongm, Dong-Young;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.149-150
    • /
    • 2006
  • A ZnO nanowire-based FET is fabricated m this study on a flexible substrate of PES. For the flat and bent flexible substrates, the current ($I_D$) versus drain-source bias voltage ($V_{DS}$) and $I_D$ versus gate voltage ($V_G$) results are compared. The flat band was Ion/Ioff ratio of ${\sim}10^7$, a transconductance of 179 nS and a mobility of ~10.104 cm2/Vs at $V_{DS}$ =1 V. Also bent to a radius curvature of 0.15cm and experienced by an approximately strain of 0.77 % are exhibited an Ion/Ioff ratio of ${\sim}10^7$, a transconductance of ~179 nS and a mobility of ${\sim}10.10 cm^2/Vs$ at $V_{DS}$ = 1V. The electrical characteristics of the FET are not changed very much. although the large strain is given on the device m the bent state.

  • PDF

Development of ZnSSe:Te/ZnMgSSe DH structure Blue~Green tight Emitting Diodes (ZnSSe:Te/ZnMgSSe DH 구조 청색~녹색발광다이오드의 개발)

  • 이홍찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • The optical properties of $ZnS_ySe_{1-\chi-y}:Te_{\chi}(\chi<0.08,y~0.11)$ alloys grown by molecular beam epitaxy (MBE) have been investigated by photoluminescence (PL) and PL-excitation (PLE) spectroscopy. Good optical properties and high crystal quality were established with lattice match condition to GaAs substrate. At room temperature, emission in the visible spectrum region from blue to green was obtained by varying the Te content of the ZnSSe:Te alloy. The efficient blue and green emission were assigned to $Te_1 and Te_n(n\geq2)$cluster bound excitons, respectively. Bright green (535 nm) and blue (462 nm) light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer. The turn-on voltage of 2.1 V in current-voltage characteristics is very small compared to that of commercial InGaN-based LEDs (>3.4 V), indicating the formation of a good ohmic contact due to the optimized p-ZnSe/p-ZnTe multi-quantum well (MQW) superlattice electrode layers.

ZnTe:O/CdS/ZnO intermediate band solar cells grown on ITO/glass substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.197.2-197.2
    • /
    • 2015
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, the ZnTe:O/CdS/ZnO structure was fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 4.5 J/cm2. The base pressure of the chamber was kept at a pressure of approximately $4{\times}10-7Torr$. ZnO thin film with thickness of 100 nm was grown on to ITO/glass, and then CdS and ZnTe:O thin film were grown on ZnO thin film. Thickness of CdS and ZnTe:O were 50 nm and 500 nm, respectively. During deposition of ZnTe:O films, O2 gas was introduced from 1 to 20 mTorr. For fabricating ZnTe:O/CdS/ZnO solar cells, Au metal was deposited on the ITO film and ZnTe:O by thermal evaporation method. From the fabricated ZnTe:O/CdS/ZnO solar cell, current-voltage characteristics was measured by using HP 4156-a semiconductor parameter analyzer. Finally, solar cell performance was measured using an Air Mass 1.5 Global (AM 1.5 G) solar simulator with an irradiation intensity of 100 mW cm-2.

  • PDF

Diffusion Coefficient of Iron in ZnSe Polycrystals from Metal Phase for mid-IR Gain Medium Application

  • Jeong, Junwoo;Myoung, NoSoung
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.371-375
    • /
    • 2014
  • Diffusion coefficient of Fe in polycrystalline host ZnSe as a mid-IR gain medium has been measured in the annealing temperature ranges of 850 to $950^{\circ}C$. The synthesis of the samples was carried out in quartz ampoule in which the Fe thin film deposited by physical vapor evaporation method on the ZnSe. One can realize that the diffusion coefficient strongly depends on the surface active surfactants through the cleaning process and the substrate temperature during the thin film deposition leading to $2.04{\times}10^{-9}cm^2/s$ for $Fe^{2+}:ZnSe$. The Annealing temperature dependence of the Fe ions diffusion in ZnSe was used to evaluate the activation energy, $E_a$=1.39 eV for diffusion and the pre-exponential factor $D_0$ of $13.5cm^2/s$.

Characterization of ZnO Thin Films prepared by Pulsed Laser Deposition Technique (PLD 기술로 제작된 ZnO 박막의 특성)

  • No, In-Jun;Shin, Paik-Kyun;Lee, Neung-Heon;Kim, Yong-Hyuk;Ji, Seung-Han;Lee, Sang-Hee;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1404-1405
    • /
    • 2006
  • Transparent ZnO thin films were deposited on quartz substrates by a KrF pulsed laser deposition (PLD) technique with different process conditions such as substrate temperature ($T_s$) and oxygen ambient pressure ($pO_2$). Surface morphology, crystal structure, and electrical properties of the ZnO films were investigated in order to characterize their thin film properties. The pulsed laser deposited ZnO films showed highly c-oriented crystalline structures depending on the process conditions: the highest FWHM (Full Width Half Maximum) value of (002) peak was observed for the ZnO film prepared at $T_{s}=550^{\circ}C$, $pO_2$=5mTorr and laser fluence of $2J/cm^2$.

  • PDF