• Title/Summary/Keyword: ZnS nanopowders

Search Result 7, Processing Time 0.021 seconds

Fabrication of Transition-metal-incorporated TiO2 Nanopowder by Flame Synthesis (화염법에 의한 천이금속 첨가 이산화티타늄 나노분말의 제조)

  • Park Hoon;Jie Hyunseock;Lee Seung-Yong;Ahn Jae-Pyoung;Lee Dok-Yol;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.399-405
    • /
    • 2005
  • Nanopowders of titanium dioxide $(TiO_2)$ incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of $TiO_2$ crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped $TiO_2$ nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped $TiO_2$ nanopowders incorporating Fe-Zn. The transition element incorporated in the $TiO_2$ was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped $TiO_2$ nanopowder showed light absorption over more wide wavelength range than the single-doped $TiO_2$ nanopowders.

A Study of Middle Infrared Transparent Properties of ZnS Ceramics by the Change of Micro Structure (미세 구조 변화에 따른 ZnS 세라믹의 중적외선 투과 특성 연구)

  • Park, Chang-Sun;Yeo, Seo-Yeong;Kwon, Tae-Hyeong;Park, Woon-ik;Yun, Ji-Sun;Jeong, Young-Hun;Hong, Youn-Woo;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.722-727
    • /
    • 2017
  • Transparent ZnS ceramics were synthesized by hydrothermal synthesis ($180^{\circ}C$ for 70 h), and were sintered by a hot press process at $950^{\circ}C$. To confirm the optical properties of the ZnS ceramics after sintering for various sintering holding times, we performed X-ray diffraction analysis, scanning electron microscopy, and Fourier-transform-infrared spectroscopy. The ZnS nanopowders was found to be single-phase (cubic) without any hexagonal phase. However, the hexagonal phase is formed and increases in content with increasing sintering holding time. The density of the ZnS ceramics was above 99.7%, except for the unsintered one. The ZnS ceramics showed high transmittance (~70%) when sintered for more than 2 h.

Preparation of ZnO Powders by Hydrazine Method and Its Sensitivity to C2H5OH (하이드라진 방법에 의한 ZnO 미분말의 합성 및 에탄올 감응성)

  • Kim, Sun-Jung;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.628-633
    • /
    • 2008
  • ZnO nanopowders were synthesized by the sol-gel method using hydrazine reduction, and their gas responses to 6 gases (200 ppm of $C_2H_5OH$, $CH_3COCH_3$, $H_2$, $C_3H_8$, 100 ppm of CO, and 5 ppm of $NO_2$) were measured at $300\;{\sim}\;400^{\circ}C$. The prepared ZnO nanopowders showed high gas responses to $C_2H_5OH$ and $CH_3COCH_3$ at $400^{\circ}C$. The sensing materials prepared at the compositions of [$ZnCl_2$]:[$N_2H_4$]:[NaOH] = 1:1:1 and 1:2:2 showed particularly high gas responses ($S\;=\;R_a/R_g,\;R_a$ : resistance in air, $R_g$ : resistance in gas) to 200 ppm of $C_2H_5OH$($S\;=\;102.8{\sim}160.7$) and 200 ppm of $CH_3COCH_3$($S\;= 72.6{\sim}166.2$), while they showed low gas responses to $H_2$, $C_3H_8$, CO, and $NO_2$. The reason for high sensitivity to these 2 gases was discussed in relation to the reaction mechanism, oxidation state, surface area, and particle morphology of the sensing materials.

Optical Properties of Middle Infrared Transparent ZnS Ceramics at Various Sintering Temperatures (소결온도에 의한 중적외선 투과용 ZnS 세라믹스의 광학적 특성)

  • Yeo, Seo-Yeong;Kwon, Tae-Hyeong;Kim, Chang-Il;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.249-253
    • /
    • 2018
  • Infrared transparent ZnS ceramics were synthesized through hydrothermal synthesis ($180^{\circ}C$, 70 h) and sintered using a hot press process at $750^{\circ}C-1000^{\circ}C$. We carried out x-ray diffraction, scanning electron microscopy, and Fourier transform-infrared spectroscopy to confirm the optical properties of the ZnS ceramics after sintering at various temperatures. The phase of ZnS nanopowders was a single phase (cubic) without the hexagonal phase. However, as sintering temperature increased, the formation and increment of hexagonal structures was confirmed. The ZnS ceramic sintered at a temperature of $750^{\circ}C$ showed poor transmittance because it was not completely sintered and because of the pore effect. The ZnS ceramic with the highest transmittance (approximately 69%) was sintered at $800^{\circ}C$. As sintering temperature increased, transmittance gradually decreased owing to the increase in the formation of the hexagonal phase.

Fabrication of ZnS Powder by Glycothermal Method and Its Photocatalytic Properties (Glycothermal법에 의한 ZnS 분말 합성 및 광촉매 특성)

  • Park, Sang-Jun;Lim, Dae-Young;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.489-494
    • /
    • 2017
  • ZnS powder was synthesized using a relatively facile and convenient glycothermal method at various reaction temperatures. ZnS was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate and thiourea as raw materials, and diethylene glycol as the solvent. No mineralizers or precipitation processes were used in the fabrication, which suggests that the spherical ZnS powders were directly prepared in the glycothermal method. The phase composition, morphology, and optical properties of the prepared ZnS powders were characterized using XRD, FE-SEM, and UV-vis measurements. The prepared ZnS powders had a zinc blende structure and showed average primary particles with diameters of approximately 20~30 nm, calculated from the XRD peak width. All of the powders consisted of aggregated secondary powders with spherical morphology and a size of approximately $0.1{\sim}0.5{\mu}m$; these powders contained many small primary nanopowders. The as-prepared ZnS exhibited strong photo absorption in the UV region, and a red-shift in the optical absorption spectra due to the improvement in powder size and crystallinity with increasing reaction temperature. The effects of the reaction temperature on the photocatalytic properties of the ZnS powders were investigated. The photocatalytic properties of the as-synthesized ZnS powders were evaluated according to the removal degree of methyl orange (MO) under UV irradiation (${\lambda}=365nm$). It was found that the ZnS powder prepared at above $175^{\circ}C$ exhibited the highest photocatalytic degradation, with nearly 95 % of MO decomposed through the mediation of photo-generated hydroxyl radicals after irradiation for 60 min. These results suggest that the ZnS powders could potentially be applicable as photocatalysts for the efficient degradation of organic pollutants.

Low temperature synthesis of ZnO nanopowders by the polymerized complex method (착체중합법을 이용한 ZnO 나노분말의 저온합성)

  • 권용재;김경훈;임창성;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.229-233
    • /
    • 2002
  • Nano-sized ZnO particles were successfully synthesized at low temperatures by a polymerized complex method via an organochemical route. The polymeric precursors could be prepared using Zn nitrate hexahydrate and a mixed solution of citric acid and ethylene glycol as a chelating agent and a reaction medium. The polymeric precursors were calcined at temperatures from 300 to $700^{\circ}C$ for 3 h, and evaluated for degree of crystallization process, thermal decomposition, surface morphology and crystallite size. The thermal decomposition and crystallization process were analyzed by TG-DTA, FI-IR and XRD. The morphology and crystallite size of the calcined particles were evaluated by scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and Scherrer's equation. Crystallization of the ZnO particles was detected at $300^{\circ}C$ and entirely completed above $400^{\circ}C$. Particles calcined between 400 and $700^{\circ}C$ showed a uniform size distribution with a round shape. The average particle sizes calcined at $400^{\circ}C$ for 3 hour were 30~40nm showing an ordinary tendency to increase with the temperatures.