• Title/Summary/Keyword: ZnS:Mn,Cl

Search Result 76, Processing Time 0.025 seconds

White electroluminescent device by ZnS:Mn, Cu, Cl phosphors

  • Kim Jong-Su;Park Jae-Hong;Kim Gwang-Cheol;Gwon Ae-Gyeong;Park Hong-Lee
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.225-231
    • /
    • 2006
  • .고상반응법 (solid state reaction)합성된 ZnS:Mn,Cu,Cl 형광체는 약 $20^{\sim}25{\mu}m$ 의 구형이고, Cubic/hexagonal 구조를 보였다. Electroluminescent device(ELD)는 실크 스크린된 형광층(ZnS:Mn,Cu,Cl)/유전체층 ($BaTiO_3$)으로 구성되었으며, 각층은 $30^{\sim}50{\mu}m,\;50^{\sim}60{\mu}m$ 정도로 도포 하였다. 100 V-400 Hz 의 구동조건에서, ELD 의 백색 발광은 450 nm, 480 nm 픽에서 각각 $Cl_s{\to}Cu^{+}\;_{Zn},\;Cl_s{\to}Cu^{2+}\;_{Zn}$ 전이에 의해 중첩된 청색, 녹색 밴드의 발광과, 580 nm 픽에서 Mn 의 $^{4}T_1{\to}^{6}A_1$ 전이에 의한 황색 밴드의 발광으로 이루어진다. Cu 농도의 증가에 따라 450 nm 의 발광 밴드의 휘도는 감소하며 580 nm 의 발광 밴드의 휘도가 증가하였고 발광 휘도가 향상되었다. 즉, 색온도가 높은 cold white(10000 K)에서 색온도가 낮은 Warm white(3000 K) 로 변한다. 이것은 450 nm 의 발광 밴드가 580 nm 의 발광 밴드에 흡수되는 에너지 전이 (Energy transfer) 현상에 기인한다. ZnS:Mn,Cu,Cl 의 Mn 1.5 wt %, Cu 2.5 wt.% 에서 최적 발광 휘도를 보이며, 100 V-400 Hz 에서 약 $12cd/cm^2$이였다.

  • PDF

The optical properties dependent on different doping concentrations of activators Cu2+ and in ZnS:Mn,Cu,Cl phosphor (활성제 Cu2+ 및 도핑농도에 따른 ZnS:Mn,Cu,Cl 형광체의 광학적 특성)

  • Han, Sang-Do;Kwon, Ae-Kyung;Lee, Hak-Soo;Han, Chi-Hwan;Kim, Jung-Duk;Gwak, Ji-Hye
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.323-327
    • /
    • 2006
  • Manganese, copper and chlorine-doped ZnS phosphors (ZnS:Mn,Cu,Cl) were synthesized through solid-state reaction. Manganese was added in the range of amount $1.4{\sim}5.3$ mol % to ZnS phosphors containing 0.2 or 1.0 mol % of copper and a small amount of chlorine. As-synthesized phosphors showed a spherical morphology with a mean size of ${\sim}20\;{\mu}m$ and structural properties of Wurtzite, which were identified by SEM and XRD, respectively. Optical properties of ZnS:Mn,Cu,Cl synthesized with various concentrations of activators were analysed by both of PL and EL spectra. Samples mainly showing only 580 nm-orange emission by 380 nm-UV excitation gave different EL spectra of blue, green, and orange emissions at 450, 480 and 580 nm, respectively, depending on concentrations of $Cu^{2+}$ and $Mn^{2+}$.

ZnS:Mn/Cu,Cl계 나노 형광체 EL의 발광 특성 연구

  • Kum, Jeong-Hun;Lee, Seong-Eui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.291-291
    • /
    • 2009
  • ZnS:Mn/Cu,Cl 계 나노 형광체의 특성을 살펴보았다. 실험에서는 ZnS:Mn 과 ZnS:Cu,Cl 형광체 파우더를 이용하여 밀링을 통하여 분쇄하여 EL 소자를 제작하였다. 형광체 파우더를 볼밀에 $\Phi5mm$의 지르코나이 볼과 에탄올과 함께 넣고 2, 4, 6, 8, 10일간 밀링을 하였다. 밀링한 형광체 파우더를 SEM을 통하여 파우더의 사이즈를 관찰하였다. 또 이 파우더를 이용하여 EL 소자를 제작하였다. 소자의 구조는 기판은 알루미나 기판을, 하부 전극은 Au, 유전체는 $BaTiO_3$ 유전체 페이스트를 사용하였으며, 형광체 적층 후 ITO 전극을 스퍼터를 이용하여 증착하여 제작하였다. 제작한 소자를 이용하여 소자의 휘도 등 발광 특성을 살펴보았다.

  • PDF

White Electroluminescent Device Implementation and Its Electrical and Optical Properties (백색 전계 발광소자의 구현과 전기 .광학적 특성)

  • 양종경;김종욱;김진만;노승수;박홍용;이종찬;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.343-346
    • /
    • 2001
  • To implementation of white electroluminescnet device in this paper, two methods were tried without synthesis of new white EL phosphor. At first, ZnS:Mn,Cl was mixed with ZnS:Cu from 20 to 50 weight percents. Second, ZnS:Mn,Cl was mixed with blue dye from 0 to 1.2 weight percents. The devices for experiments were measured as following; current-voltage, emission spectrum, brightness-voltage and CIE coordinate system and frequency properties.

  • PDF

Effect of ZnS:Mn, Dy Yellow Phosphor on White LEDs Characteristics (백색 LED의 특성에 대한 ZnS:Mn, Dy 황색 형광체의 영향)

  • Shin, Deuck-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.295-298
    • /
    • 2011
  • ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction method using ZnS, $MnSO_4{\cdot}5H_2O$, S and $DyCl_3{\cdot}6H_2O$ powders as starting materials. The mixed powder was sintered at $1000^{\circ}C$ for 4 h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn, Dy phosphors was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450 nm excitation was observed at 4 mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energy transfer from $Dy^{3+}$ to $Mn^{2+}$. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X = 0.5221, Y = 0.4763. The optimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy : yellow phosphor = 1:2 form CIE coordinate.

Effect of heat treatment condition on optical properties of ZnS:Mn,Cu,Cl phosphor

  • Lee, Hak-Soo;Cho, Tai-Yeon;Gwak, Ji-Hye;Han, Sang-Do;Han, Chi-Hwan;Park, Sang-Hyun;Chun, Il-Su
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1534-1536
    • /
    • 2007
  • ZnS-based orange-emitting phosphors were synthesized by two-step firing process: above $1000^{\circ}C$ to obtain hexagonal phase, and at $750^{\circ}C$ for cubic phase. The effect of heat treatment condition on the optical properties was investigated to fine an optimum condition for high-performance ZnS:Mn,Cu,Cl phosphor.

  • PDF

Optical Properties of ZnS:Mn,Cu,Cl Phosphor for Inorganic ELD (무기 ELD용 ZnS:Mn,Cu,Cl 형광체의 광학적 특성 연구)

  • Lee, Hak-Soo;Gwak, Ji-Hye;Han, Sang-Do;Han, Chi-Hwan;Kim, Jung-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.424-425
    • /
    • 2006
  • Zinc sulfide is a well-known host material of phosphor emitting different radiations dependent on different doping impurities of metallic ion. It emits green, blue, orange-yellow or white colors by doping with activators such as copper, silver, manganese and so on. In this study, manganese, copper and chlorine doped ZnS phosphor (ZnS:Mn,Cu,Cl) was synthesized by solid-state reaction method. The optical properties were investigated according to different concentrations of sulfur and activators used during the synthesis process.

  • PDF

Luminescence of orange-emitting ZnS:Mn,Cu,Cl for EL device

  • Lee, Hak-Soo;Han, Sang-Do;Gwak, Ji-Hye;Han, Chi-Hwan;Kim, Jung-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1093-1095
    • /
    • 2006
  • An orange-emitting phosphor for inorganic electroluminescent device has been studied. Cu and Cl were co-doped in Mn-doped ZnS for a high-performing phosphor. The effect of $Mn^{2+}-doping$ concentration as well as $Mg^{2+}-sensitizer$ addition on the luminescence characteristics has been investigated.

  • PDF

The State and Sources of Contamination with Heavy Metals and Anion in Stream Within Chonju City (전주시 하천의 중금속과 음이온에 대한 수질현황 및 오염원)

  • 오창환;이지선;김강주;정성석;황갑수;이영엽
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • The Chonju and Samchun streams are passing though Chonju city and several contamination sources are located along these streams. The Samchun stream joins the Chonju stream in the Gosapyeong waste disposal site and the Chonju stream finally joins to the Mankyeong River. The objectives of this study are to determine the state and sources of contamination for heavy metals and anions in the Chonju and Samchun streams and to evaluate the effect of these streams on the contamination of the Mankyeong River. In order to select sampling locations, a stratified random sampling method was used. These streams was divided into several parts according to the expected contamination state, and samples were selected randomly from these parts. Generally, the water qualities of these streams were generally below the Drinking Water Level at the time of sampling in various heavy metals and anions. However, the levels of AI, Fe, $NH_{3}-N,Cl^{-}$, Cl- in these streams could be higher during dry season due to continuous inputs from various contamination sources. This study identified several contamination sources for these streams; two waste disposal sites along these streams for Fe, Mn, AI, Zn and $Cl^{-}$, the Chonju Waste Water Treatment Plant for Zn, Mn, $Cl^{-}$, $SO_{4}S$, $NO_{2}N$, and $NH_{3}-N$ and the untreated sewages for AI, Zn, Mn, $Cl^{-}$, $SO_{4}S$, $NH_{3}-N$ and $PO_{4}^{2-}$. This study also revealed that the Chonju stream itself is an important contamination source for Fe, Mn, $Cl^{-}$ and $SO_{4}S$ in the Mankyung River.

  • PDF

White Electroluminescent Device by ZnS: Mn, Cu, Cl Phosphors

  • Kim, Jong-Su;Park, Je-Hong;Lee, Sung-Hun;Kim, Gwang-Chul;Kwon, Ae-Kyung;Park, Hong-Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.1-4
    • /
    • 2006
  • White-light-emitting ZnS:Mn, Cu, Cl phosphors with spherical shape and the size of $20\;{\mu}m$ are successfully synthesized. They have the double phases of cubic and hexagonal structures. They are applied to electroluminescent (EL) devices by silk screen method with the following structure: $electrode/BaTiO_3$ insulator layer ($50{\sim}60\;{\mu}m$)/ ZnS:Mn, Cu, Cl phosphor layer ($30{\sim}50\;{\mu}m$)/ITO glass. The EL devices are driven with the voltage of 100 V and the frequency of 400 Hz. The EL devices show the three emission peaks. The blue and green emission bands are originated from $CICu^{2+}$ transition and $ClCu^+$ transition, respectively. The yellow emission band results from $^4T^6A$ transition of $Mn^{2+}$ ion. As an increase of Cu concentrations, the blue and green emission intensities decrease whereas the yellow emission intensity increases; the quality becomes warm white. It is due to the energy transfer from the blue and green bands to the yellow band.

  • PDF