• Title/Summary/Keyword: ZnS:Ag

Search Result 184, Processing Time 0.023 seconds

Geochemistry of the Moisan Epithermal Gold-silver Deposit in Haenam Area (해남 모이산 천열수 금은광상의 지구화학적 특성)

  • Moon, Dong-Hyeok;Koh, Sang-Mo;Lee, Gill-Jae
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.491-503
    • /
    • 2010
  • Geochemical characteristics of the Moisan epithermal gold-silver deposit with total 140 samples in Haenam area, Jeollanamdo were studied by using multivariate statistical analysis (correlation analysis, factor analysis and cluster analysis). The correlation analysis reveals that Ag, Cu, Bi, Te are highly correlated with Au in the both non-mineralized and mineralized zone. It is resulted from the presence of Au-Ag bearing minerals (electrum, sylvanite, calaverite and stuezite) and non Au-Ag containing minerals (chalcopyrite, tellurobismuthite and bismuthinite). Mo shows relatively much higher correlation at the mineralized zone (0.615) than non-mineralized zone (0.269) which implies Mo content is strongly affected by Au-mineralization. While Mn, Cs, Fe, Se correlated with Au at the nonmineralized zone, they have negative correlation at the mineralized zone. Therefore, they seem to be eluviated elements from the host rock during gold mineralization. Sb is enriched during the gold mineralization showing high correlation at the mineralized zone and negative correlation at the non-mineralized zone. According to the factor analysis, Se, Ag, Cs, Te are the indicators of gold mineralization presence due to the strong affection of gold content in the non-mineralized zone. In the mineralized zone, on the other hand, Mo, Te and Sb, Cu are the indicators of gold and silver mineralization, respectively. While the cluster analysis reveals that Cd-Zn-Pb-S, Bi-Fe-Cu-Mn, Se-Te-Au-Cs-Ag, As-Sb-Ba are the similar behavior elements groups in the non-mineralized zone, Cd-Zn-Mn-Pb, Fe-S-Se, As-Bi-Cs, Ag-Sb-Cu, Au-Te-Mo are the similar behavior elements groups in the mineralized zone. Using multivariate statistical analysis as mentioned above makes it possible to compare the behavior of presented minerals and difference of geochemical characteristics between mineralized and non-mineralized zone. Therefore, it will be expected a useful tool on the similar type of mining exploration.

Geochemistry of the Hydrothermal Chimneys in the Manus Basin, Southwestern Pacific Ocean (남서태평양 Manus Basin에서 산출되는 열수 분출구에 대한 지화학적 연구)

  • 이경용;최상훈;박숭현
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Manus Basin, located in the equatorial western Pacific, is a back arc basin formed by collision between the IndoAustralian and the Pacific Plates. The basin is host to numerous hydrothermal vent fields and ore deposits. The basement rocks of the Manus Basin consist primarily of dacite and basaltic andesite. Some of the minerals that form the hydrothermal chimneys that were dredged on the Manus basin include pyrite, chalcopyrite, marcasite, sphalerite and galena. The chimneys can be classified into chalcopyrite dominant Cu-rich type and sphalerite dominant Zn-rich type. The concentration of Zn shows good positive correlation with that of Sb, Cd and Ag. The content of Cu, on the other hand, positively correlates with that of Mo, Mn and Co. For samples that were taken from Zn-rich chimney, a strong positive correlation is found between Au and Zn contents. The chimney also shows enrichments of Cd, Mn and Sb. On the other hand, the samples from Cu-rich chimney exhibit strong correlation among Au, Zn and Pb, and are enriched in Mo and Co concentration. Average contents of Au in Cu-rich and Znrich chimneys were 15.9 ppm and 29.0 ppm, respectively. Because of high concentration of Au with Ag and Cu, the ore deposit have high economic potential. Homogenization temperatures and salinities of fluid inclusions in anhydrite and amorphous silica from Zn-rich chimney are estimated to be l74-220$^{\circ}$C and 2.7-3.6 equiv. wt. % NaCI, respectively. These value suggest that ore forming processes were occurred at around 200$^{\circ}$C and that the oxygen fugacity changed from 2: 10$^{-39.5}$bar to -s: 10$^{-40.8}$bar and the sulfur fugacity from -s: 10$^{-14.7}$bar to 10$^{-13.4}$bar during the process. It appears that the temperature at which the ores formed on Cu-rich chimney was higher than that on Zn-rich chimney.

Fabrication and Characteristics of High Brightness White Emission Electroluminescent Device (고휘도 백색방출 전계발광소자의 제작 및 특성)

  • Bae, Seung-Choon;Kim, Jeong-Hwan;Park, Sung-Kun;Kwun, Sung-Yul;Kim, Woo-Hyun;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.10-15
    • /
    • 1999
  • White emission thin film electroluminescent device was fabricated using ZnS for phosphor layer and BST ferroelectric thin film for insulating layer. For fabrication conditions of BST thin film, stoichiometry of target was $Ba_{0.5}Sr_{0.5}TiO_3$, substrate temperature was $400^{\circ}C$, working pressure was 30 mTorr, and A:$O_2$ ratio was 9:1. At this time, dielectric constant was 209 at 1kHz frequency. For phosphor layer ZnS:Mn, ZnS:Tb, and ZnS:Ag were used. Mixing rates of activators were respectively 0.8, 0.8, and 1 wt%. Total thickness of phosphor tapers was 500 nm, thickness of lower insulating layer was 200 nm, and thickness of upper insulating layer was 400 nm. In this conditions, luminescence threshold voltage of thin film electroluminescent device was $95\;V_{rms}$, maximum brightness was $3,000\;cd/m^2$ at $150\;V_{rms}$. Luminescence spectrum peak was observed at region of blue(450 nm), green(550 nm), and red(600 nm).

  • PDF

Improvement on the Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Amorphous Oxide Multilayer Source/Drain Electrodes

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.143-145
    • /
    • 2016
  • In order to find suitable source and drain (S/D) electrodes for amorphous InGaZnO thin film transistors (a-IGZO TFTs), the specific contact resistance of interface between the channel layers and various S/D electrodes, such as Ti/Au, a-IZO and multilayer of a-IGZO/Ag/a-IGZO, was investigated using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes had good performance and low contact resistance due to the homo-junction with channel layer. The stability was measured with different electrodes by a positive bias stress test. The result shows the a-IGZO TFTs with a-IGZO/Ag/a-IGZO electrodes were more stable than other devices.

O2 plasma를 이용한 Flexible ZnO nanogenerator 특성 향상 연구

  • Gang, Mul-Gyeol;Park, Seong-Hwak;Ju, Byeong-Gwon;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.283.1-283.1
    • /
    • 2013
  • ZnO nanowire를 기반으로 하는 nanogenerator는 미세한 움직임을 전기 에너지로 변환 시키는 압전 에너지 하베스팅 기술로 기존 에너지 하베스터와 비교하여 사용환경의 제약이 적고, 소형화가 가능한 장점으로 주목을 받고 있다. 특히 혈류, 심장박동, 호흡 등 인체 활동 에너지를 이용한 발전 소자 등의 활용이 가능하여 활발한 연구가 진행되고 있다. 하지만, 최근 발표된 film like Vertical 구조의 nanogenerator는 nanowire의 구조 취약성으로 인해 내구성이 좋지 못한 단점이 있다. 또한 ZnO nanowire의 내부 O2 결함 및 표면 OH-기의 흡착에 의한 특성 저하가 나타난다. 본 연구에서는 nanogenerator의 내구성을 향상시키기 위해 capping layer로 실리콘 계 유무기 하이브리드를 적용하여 코팅 물질 및 코팅 방법을 최적화 하였으며 상부 전극을 CNT-Ag nanowire 소재로 대체하여 유연기판에 대응코자 하였다. 또한 APP(Atmosphere Pressure Plasma)와 ICP(Inductively Coupled Plasma)장비를 사용하여 ZnO nanowire를 표면처리하였고, 각각의 플라즈마 표면처리의 영향에 대해 조사하였다. XPS를 통하여 OH-기의 제거 유무를 확인하였으며, 소자의 발전 특성의 향상을 확인 하였다.

  • PDF

Characteristics of Brazed Joint of Sintered Bronze/steel Using Ag-Cu-Zn Type Filler Materials (Ag-Cu-Zn-Cd 계 용가재를 이용한 Bronze 소결체/강의 브레이징 접합부 특성 평가)

  • 이정훈;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.79-89
    • /
    • 1999
  • The study was carried out to examine in more detail metallurgical and mechanical properties of brazed joints of diamond cutting wheel. In this work, shank(mild steel) and sintered bronze-base tips were brazed with three different filler materials(W-40, BAgl and BAg3S). The machine used in this work was a high frequency induction brazing equipment. The joint thickness, porosities and microstructure of brazed joints with brazing variables(brazing temperature, holding time) were evaluated with OLM, SEM, EDS and XRD. Bending(torque) test was also performed to evaluate strength of brazed joints. Further wetting test was performed in a vacuum furnace in order to evaluate the wettability of filler metals on base metals9shank and tips). The brazing temperature had a strong influence on the joint strength and the optimum brazing temperature range was about $700~850^{\circ}C$ for the bronze/steel combinations. The strength of the brazed joint was found to be influenced by the three factors : degree of reaction region, porosity content, joint thickness. The reaction region was formed in the bronze-base tip adjacent to the joint. The reaction region resulted in a bad influence on the strength due to the formation of Cu5.6Sn, CuZn4, $\beta(CuZn)$ and CdAg, etc. Porosities increased as brazing variables(brazing temperature, holding time) increased, and the brazed joints with porosities of less than about 3-5% had an optimum strength for the bronze-base tip.

  • PDF

Ore Minerals and Fluid Inclusions Study of the Kamkye Cu-Pb-Zn-Au-Ag Deposits, Repubulic of Korea (감계 동(銅)-연(鉛)-아연(亞鉛)-금(金)-은광상(銀鑛床) 광석광물(鑛石鑛物)과 유체포유물(流體包有物) 연구(硏究))

  • Lee, Hyun Koo;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 1995
  • The Kamkye Cu-Pb-Zn-Au-Ag deposits occur as quartz veins that filled fault-related fractures of NW system developed in the Cretaceous Gyeongsang basin. Three major stages of mineral deposition are recognized: (1) the stage I associated with wall rock alteration, such as sericite, chlorite, epidote and pyrite, (2) the early stage II of base-metal mineralization such as pyrite, hematite, and small amounts of sphalerite and chalcopyrite. and the middle to late stage II of Cu-As-Sb-Au-Ag-S mineralization, such as sphalerite, chalcopyrite, galena with tetrahedrite, tennantite, pearceite, Pb-Bi-Cu-S system, argentite and electrum. (3) the stage III of supergene mineralization, such as covellite, chalcocite and malachite. K-Ar dating of alteration sericite is a late Cretaceous ($74.0{\pm}1.6Ma$) and it may be associated with granitic activity of nearby biotite granite and quartz porphyry. Fluid inclusion data suggest a complex history of boiling, cooling and dilution of ore fluids. Stage II mineralization occurred at temperatures between 370 to $220^{\circ}C$ from fluids with salinities of 8.4 to 0.9 wt.% NaCl. Early stage II($320^{\circ}C$, 2.0 wt.% NaCl) may be boiled due to repeated fracturing which opened up the hydrothermal system to the land surface, and which resulted in a base-metal sulfide. Whilst the fractures were opened to the surface, mixing of middle-late stage II ore fluids with meteoric waters resulted in deposition of Cu-As-Sb-Au-Ag minerals from low temperature fluids(${\leq}290^{\circ}C$). Boiling of ore fluids may be occured at a pressure of 112 bar and a depth of 412 m. Equilibrium thermodynamic interpretation of sphalerite-tetraherite assemblages in middle stage II indicates that the ore-forming fluid had log fugacities of $S_2$ of -6.6~-9.4 atm.

  • PDF

Environmental Contamination and Bioavailability Assessment of Heavy Metals in the Vicinity of the Dogok Au-Ag-Cu Mine (도곡(Au-Ag-Cu)광산 주변지역의 중금속 원소들의 환경오염특성 및 생체흡수도 평가)

  • Lee Sung-Eun;Lee Jin-soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.135-142
    • /
    • 2005
  • In order to investigate the contamination level and seasonal variation of heavy metals and evaluate the bioavailability of toxic elements, environmental geochemical survey was undertaken at the Dogok Au-Ag-Cu mine area. The main pollution sources in the area were suggested as tailings, mine waste materials and mine water. Elevated levels of $140{\cal}mg/{\cal}kg{\;}As,{\;}107{\cal}mg/{\cal}kg{\;}Cd,{\;} 3017{\cal}mg/{\cal}kg{\;}Cu,{\;}12926{\cal}mg/{\cal}kg{\;}Pb,{\;}9094{\cal}mg/{\cal}kg$ Zn(before rainy season) were found in mine tailings. Concentrations of heavy metals in farmland soils exceeded normal level in nature soil (Bowen, 1979). The highest level of heavy metals was found in water samples near the mine tailing dumps regarded as a main pollution source of toxic elements in the area. These concentrations decreased to downstream due to the effect of dilution. From the results of sequential extraction analyses for tailings and soils, non-residual forms of heavy metals were found, which indicate the contamination to be progressing by continuing weathering and oxidation. Cadmium and Zn would be of the highest mobility in all samples. The bioavailability of Cd, Cu, Zn and As using SBET analysis from paddy soils was $53.3{\%},{\;}46.5{\%},{\;}41.0{\%}$ and $37.0\%$, respectively. The farmland soil sample(S3) showed the highest total concentration and bioavailability of heavy metals.

PURIFICATION AND PROPERTIES OF EXTRACELLULAR NUCLEASE(S) FROM RUMEN CONTENTS OF BUBALUS BUBALIS

  • Sinha, P.R.;Dutta, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 1990
  • Extracellular nuclease(s) in buffalo rumen fluid were purified from strained rumen fluid by a procedure involving Seitz filtration, acetone fractionation and gel filtration on Sephadex G-100. The enzyme resolved into two peaks exhibiting both DNase and RNase activities. The molecular weight of enzyme corresponding to peaks I and II were approximately 30,000 and 12,000 respectively. The properties of enzymes from the two peaks, however, were same. Optimum temperature for both DNase and RNase activities was at $50^{\circ}C$. Whereas DNase activity was stable upto $60^{\circ}C$, RNase activity was stable only up to $50^{\circ}C$. DNase activity recorded two pH optima, one at pH 5.5 and the other at pH 7.0. RNase activity recorded a broad pH optimum between pH 6.0-8.0. pH stability of the enzyme coincided with pH optima for both the activities. DNase activity was stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. RNase activity was also stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. Reducing agents stimulated both the activities.

Ore Minerals and Genetic Environments of the Seungryung Zn Deposit, Muzu, Korea (무주 승륭 아연광상의 광석광물과 생성환경)

  • Yeom, Taesun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • The geology of the Seungryung Zn deposit, located in the Muzu basin, consists of Precambrian leucocratic granitic gneiss, Cretaceous clastic rocks, pyroclastic rocks, and intrusive rocks. The deposit shows a weakly skarnized hydrothermal replacement ore developed along limestone bed in the gneiss. The mineralization can be divided into three stages: the early skarnization producing garnet and pyroxene, the main mineralization in the middle stage precipitating most metallic minerals such as magnetite, sphalerite, chalcopyrite, pyrrhotite, Pb-Ag-Bi-S system minerals, and the late stage for altered or low temperature minerals such as chlorite and marcasite. Pb-Ag-Bi-S system minerals include heyrovskite-eskimoite solid solution, lillianite-gustavite solid solution, and vikingite. Chalcopyrite diseases are quite common in sphalerite showing bead chains and dusting textures. The ${\delta}^{34}S$ values of sulfides minerals are concentrated within the narrow range of 3.4~4.1‰ for pyrite, 3.3~4.3‰ for sphalerite, 4.0~4.3‰ for chalcopyrite, and 2.8‰ for galena, suggesting that most sulfur is of igneous origin. Sulfur isotope geothermometry is calculated to be $346{\sim}431^{\circ}C$, implying that the mineralization occurred at relatively high temperature. FeS contents of sphalerite are relatively high in the range of 6.58~20.16 mole% (avg. 16.58 mole%) with the enrichment of Mn compared to Cd, similarly to representative skarn Pb-Zn deposits in South Korea. On the contrary, sphalerite from Au-Ag deposits in the Seolcheon mineralized zone around the Seungryung deposit is enriched in Cd, showing similar feature like representative epithermal Au-Ag deposits. This suggests that around the related igneous rocks, magnetite and sphalerite were produced at high temperature in the Seungryung deposit, and with decreasing temperature and compositional change of mineralizing fluids, Au-Ag mineralization proceeded in the Seolcheon mineralized zone.