• Title/Summary/Keyword: ZnS$_{}$ x/Se$_{}$ 1-x/

Search Result 64, Processing Time 0.023 seconds

Micro structural Characterization of $\textrm{Zn}_{1-x}\textrm{Co}_{x}\textrm{Se}$ Epilayers and (ZnSe/FeSe) Superlattice by Transmission Electron Microscopy (투과전자현미경에 의한 $\textrm{Zn}_{1-x}\textrm{Co}_{x}\textrm{Se}$박막 및 (ZnSe/FeSe) 초격자 박막의 미세구조 분석)

  • Park, Gyeong-Sun
    • Korean Journal of Materials Research
    • /
    • v.7 no.10
    • /
    • pp.914-918
    • /
    • 1997
  • MBS에 의해(001)GaAs기판 위에 성장된 Zn$_{1-x}$Co$_{x}$Se(x=1.0, 7.4, 9.5 %)반도체 박막과 (ZnSe/FeSe)반도체 초격자 박막의 미세구조를 투과전자현미경을 이용하여 연구하였다. Zn$_{1-x}$Co$_{x}$Se 박막 시편의 경우, 박막과 기판 사이의 격자 불일치때문에 a/2<110>형태의 버거즈 벡터를 가지는 부정합 전위를 관찰하였다. 모든 Zn$_{1-x}$Co$_{x}$Se 박막과 기판의 계면은 뚜렷이 구별되었고, 계면에서 산화물이나 이물질이 존재하지 않았다. 또한, (ZnSe/FeSe)초격자를 성장시키기 전에 GaAs기판 위에 ZnSe바닥층을 넣음으로써 고품질의 (ZnSe/FeSe)초격자를 얻었다. (ZnSe/FeSe)초격자에 있는 FeSe는 섬아연광 결정구조로 존재하였다.

  • PDF

X-ray diffraction analysis of ZnS/ZnSe superlattices prepared by hot wall epitaxy (열벽적층성장에 의하여 제작된 ZnS/ZnSe 초격자의 X-선 회절분석)

  • Yong Dae Choi;A. Ishida;Fujiyasu, H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.377-385
    • /
    • 1996
  • ZnS/ZnSe superlattices were prepared on GaAs (100) substrates by hot wall epitaxy, an the structures were analyzed using x-ray diffraction. It is shown that the x-ray diffraction of the strained superlattice gives very useful information about the thickness of each layer, strain, interdiffusion, and the fluctuation of the superlattice period. Interdiffusion length of the S and Se is estimated to be less than $2\;{\AA}$.

  • PDF

Optical absorption of filter glasses colored by CdS, CdSe, ZnS, and ZnSe microcrystallites (CdS, CdSe, ZnS 및 ZnSe 미세결정을 이용한 filter용 유리의 광흡수특성)

  • 신용태;윤수인
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.55-62
    • /
    • 1992
  • The optical absorption characteristics of glasses colored by CdS. CdSe, $CdS_{1-x}Se_x$,ZnS, and ZnSe microcrystallites have been studied with emphasis on changes of the cut-off wavelength. The sharpcut filters with various cut-off wavelengths were fabricated by controlling the composition and the heat-treatment temperature. The cut-off wavelength shifts due to the different heat-treatment temperatures for CdS. CdSe, ZnS, and ZnSe doped SK-16 glasses were found to be relatively small(~30 nm). However, by treating the CdS1,Se, doped SK-16 glasses with different x values at the same heattreatment temperature, it was possible to obtain the filters with various cut-off wavelengths(~130 nm) without losing the high extinction coefficients of the filters. The filter glasses with various cut-off wavelngths(~100 nm) and high extinction coefficiencts were also produced by treating the CdSe and $CdS_{0.5}Se_{0.5}$ doped ZK-1 glasses at different temperatures.

  • PDF

Influence of MBE Growth Temperature on the Sulfur Compositional Variation Of ZnSSe Epitaxial Layers on GaAs Substrates

  • Kim, Dong-Lyeul;Bae, In-Ho;Son, Jeong-Sik;Kim, In-Su;Lee, Jae-Young m;Akira Yoshida
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.18-22
    • /
    • 2000
  • In this work, we reported the sulfur compositional variation of ZnS$\_$x/Se$\_$1-x/ epitaxial layers with growth temperature and BEP ration of ZnX/Se/)P$\_$ZnS//P$\_$Se/) grown on GaAs substrates by molecular beam epitaxy. The sulfur composition of ZnSSe epitaxial layers was varied sensitively on the growth temperature and show different linear relationship with growth temperature and BEP ration of ZnS/Se(P$\_$ZnS//P$\_$Se/), which revealed -0.107 %$\^{C}$ at (P$\_$ZnS//P$\_$Se/)=0.30 and -0.052 %$\^{C}$ at (P$\_$ZnS//P$\_$Se/)=0.158 rspectively. A reference data for the accurate control of the sulfur composition and the growth of high quality ZnSSe/GaAs epitaxial layers was provided.

  • PDF

Microstructural Observations on Quaternary ZnMgSSe/GaAs Epilayer Grown by MBE (MBE로 성장시킨 4원계 ZnMgSSe/GaAs 에피층의 미세구조 관찰)

  • Lee, Hwack-Joo;Ryu, Hyun;Park, Hae-Sung;Kim, Tae-Il
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.82-89
    • /
    • 1995
  • High resolution transmission electron microscopic observations on quaternary $Zn_{1-x}Mg_{x}S_y$ $S_{1-y}$(x=0.13, y=0.16) on (001) GaAs substrate grown up to $1.2{\mu}m$ with 20nm ZnSe buffer layer at $300^{\circ}C$ by RIBER MBE system which has a single growth chamber were investigated by HRTEM working at 300kV with point resolution of 0.18nm. The ZnSe buffer layer maintains the coherency with the GaAs substrate. The stacking faults had begun at ZnSe buffer/$Zn_{1-x}Mg_{x}S_{y}S_{1-y}$ interface, whose length and spacing became larger than 60nm and wider than 40nm, respectively. The inverse triangular stacking fault was bounded by stacking faults which were formed on {111} planes with different variants. There exists rare stacking faults inside the triangular defect. The epilayer surrounded by the straight stacking faults, which had formed in the same direction, became the columnar structure.

  • PDF

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja;Jeong, So-Hee;Lee, Shi-Eun;Hong, Sun-Woo;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1555-1560
    • /
    • 2010
  • Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

Effects of Se/(S+Se) Ratio on Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Film Solar Cells Fabricated by Sputtering

  • Park, Ju Young;Hong, Chang Woo;Moon, Jong Ha;Gwak, Ji Hye;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.75-79
    • /
    • 2015
  • Recently, $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) has been received a tremendous attraction as light absorber material in thin film solar cells (TFSCs), because of its earth abundance, inexpensive and non-toxic constituents and versatile material characteristics. Kesterite CZTSSe thin films were synthesized by sulfo-selenization of sputtered Cu/Sn/Zn stacked metallic precursors. The sulfo-selenization of Cu/Sn/Zn stacked metallic precursor thin films has been carried out in a graphite box using rapid thermal annealing (RTA) technique. Annealing process was done under sulfur and selenium vapor pressure using Ar gas at $520^{\circ}C$ for 10 min. The effect of tuning Se/(S+Se) precursor composition ratio on the properties of CZTSSe films has been investigated. The XRD, Raman, FE-SEM and XRF results indicate that the properties of sulfo-selenized CZTSSe thin films strongly depends on the Se/(S+Se) composition ratio. In particular, the CZTSSe TFSCs with Se/(S+Se) = 0.37 exhibits the best power conversion efficiency of 4.83% with $V_{oc}$ of 467 mV, $J_{sc}$ of $18.962mA/cm^2$ and FF of 54%. The systematic changes observed with increasing Se/(S+Se) ratio have been discussed in detail.

The Preferred Orientation of CdSe and CdS Thin Films on the AlOx and SiO2 Templates (AlOx와 SiO2 형판위 CdSe와 CdS 박막의 우선방위(Preferred Orientation) 특성)

  • Lee, Young-Gun;Chang, Ki-Seog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.502-506
    • /
    • 2012
  • In order to find the structural characteristics of the thin films of group II-VI semiconductor compounds compared with those of powder materials, films were made of 4 powders of ZnS, CdS, CdSe, and CdTe(Aldrich), each with 99.99 % purity. For the ZnS/CdS multi-layers, the ZnS layer was coated over the CdS layer on an $AlO_x$ membrane, which served as a protective layer within a vacuum at the average speed of 1 ${\AA}$/sec. After studying the structures of the group II-VI semiconductor thin films by using X-ray spectroscopy, we found that the ZnS, ZnS/CdS, CdS, and CdSe films were hexagonal and exhibited some degree of preferred orientation. Also, the particles of the thin films of II-VI semiconductor compounds proved to be more homogeneous in size compared to those of the powder materials. These results were further verified through scanning electron microscopy(SEM), EDX analysis, and powder and thin film X-ray diffraction.

Studies on Effect of S/Se Ratio on the Properties of Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Films by Sulfo-Selenization of Stacked Precursor Thin Films (열처리 시 S/Se 분말 비율에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가)

  • Gang, Myeng Gil;He, Ming Rui;Hong, Chang Woo;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.177-181
    • /
    • 2014
  • $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) absorber thin films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu precursor thin films. The Zn-Sn-Cu precursor thin films were sulfo-selenized inside a graphite box containing S and Se powder using rapid thermal processing furnace at $540^{\circ}C$ in Ar atmosphere with pre-treatment at $300^{\circ}C$. The effect of different S/Se ratio on the structural, compositional, morphological and electrical properties of the CZTSSe thin films were studied using XRD (X-ray diffraction), XRF (X-ray fluorescence analysis), FE-SEM (field-emission scanning electron microscopy), respectively. The XRD, FE-SEM, XRF results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the S/Se composition ratio. In particular, the CZTS thin film solar cells with S/(S+Se)=0.25 shows best conversion efficiency of 4.6% ($V_{oc}$ : 348 mV, $J_{sc}$ : $26.71mA/cm^2$, FF : 50%, and active area : $0.31cm^2$). Further detailed analysis and discussion for effect of S/Se composition ratio on the properties CZTSSe thin films will be discussed.