• Title/Summary/Keyword: ZnO powders

Search Result 159, Processing Time 0.022 seconds

Modulation of Microstructure and Energy Storage Performance in (K,Na)NbO3-Bi(Ni,Ta)O3 Ceramics through Zn Doping (Zn 도핑을 통한 (K,Na)NbO3-Bi(Ni,Ta)O3 세라믹의 미세구조 및 에너지 저장 물성 제어)

  • Jueun Kim;Seonhwa Park;Yuho Min
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.509-515
    • /
    • 2023
  • Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3)O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNN-BNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNN-based ceramic capacitors with enhanced energy storage capabilities through doping strategies.

The Study of Plate Powder Coated Nano Sized ZnO Synthesis and Effect of Sensory Texture Improvement (나노 ZnO 입자가 코팅된 판상 분체의 합성과 사용감 증진 효과에 대한 연구)

  • Jin-Hwa , Lee;Ju-Yeol, Han;Sang-Gil, Lee;Hyeong-Bae, Pyo;Dong-Kyu, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.173-180
    • /
    • 2004
  • Nano sized ZnO particle as 20-30nm applies for material, pigments, rubber additives, gas sensors, varistors, fluorescent substance as well as new material such as photo-catalyst, sensitizer, fluorescent material. ZnO with a particle size in the range 20-30nm has provided to be an excellent UV blocking material in the cosmetics industry, which can be used in sunscreen product to enhance the sun protection factor and natural makeup effect. But pure ZnO particles application limits for getting worse wearing feeling. We make high-functional inorganic-composite that coated with nano-ZnO on the plate-type particle such as sericite, boron nitride and bismuthoxychloride. In this experiment, we synthesized composite powder using hydrothermal precipitation method. The starting material was ZnCl$_2$ Precipitation materials were used hexamethylenetetramine(HMT) and urea. We make an experiment with changing as synthesis factors that are concentrations of starting material, precipitation materials, nuclear formation material, reaction time, and reaction temperature. We analyzed composite powder's shape, crystallization and UV-blocking ability with FE-SEM, XRD, FT-IR, TGA-DTA, In vitro SPF test. The user test was conducted by product's formulator. In the results of this study, nanometer sized ZnD was coated regardless of the type of plate-powder at fixed condition range. When the coated plate-powders were applied in pressed powder product, the glaze of powder itself decreased, but natural make-up effect, spreadability, and adhesionability were increased.

On the Synthesis of Zn-doped GaN Fine-Powders (Zn가 첨가된 GaN 미세 분말의 합성에 관하여)

  • 이재범;이종원;박인용;김선태
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.95-95
    • /
    • 2003
  • 최근, 대면적 평판표시소자 제작을 위한 전기발광 (EL; electroluminescence)소자용 소재로서 GaN 분말을 적용하고자 하는 연구가 진행되고 있다. 이와 같이 GaN 분말을 EL 소재로 사용하기 위해서는 원하는 파장의 빛을 발광할 수 있도록 특정의 불순물을 첨가하여야 할 필요가 있다. Mg이 첨가된 GaN 분말의 합성과 특성에 대한 연구가 있었으며, 희토류 원소가 첨가된 GaN 분말의 특성이 보고된바 있다. 본 논문에서는 GaOOH 분말을 출발물질로 채택하여 Zn가 첨가된 GaN 분말을 합성하고 광학적인 특성을 조사하였다. Zn가 첨가된 GaN 분말을 합성하기 위하여, 우선 CaOOH 분말 1g과 일정량의 ZnO 또는 Zn(NO$_3$)$_3$를 함께 섞어 유발에서 습식 혼합한 후 건조시켰다. Ga에 대한 Zn의 몰 비는 0.1부터 30 까지 변화시켰다. 반응온도는 900~110$0^{\circ}C$의 범위에서 변화시켰고, 반응시간은 1~4시간 범위에서 변화시켰으며, NH$_3$의 유량은 400 sccm으로 하였다. X선 회절분석장치를 사용하여 결정구조를 확인하였고, Zn의 첨가에 따른 광학적 특성은 10 K의 온도에서 광루미네센스(PL; photoluminescence)를 측정하여 평가하였다.

  • PDF

Dependence of Compaction Behavior of Spray-Dried Ferrite Powders on the Kinds and Concentrations of Binder Systems (결합제의 종류와 양에 따라 분무건조된 페라이트 분말의 성형특성)

  • 홍대영;변순천;제해준;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1047-1055
    • /
    • 1995
  • Mn-Zn ferrite granules were formed by a spray-drying method of the slurry containing different kinds and concentrations of binders at various temperatures. The slurry was made by conventional ceramic processing method, that is, by mixing Fe2O3, MnO, ZnO powders (52 : 24 : 24 mol%), calcining and milling. Typical shape of the spray dried granules was spherical. The compaction behavior of these granules was dependent on the spray-drying temperature and the kind and concentration of binders. At lower pressure the granules were displaced and at higher pressure the granules were deformed and fractured to fill pores among the granules. The optimum concentration of the binder was 0.5wt%. The granules containing 0.5wt% PVA 205 were deformed and fractured well and the green density was higher than others. At higher concentrations of the binder the granules were deformed rather than fractured, therefore the green density was lowered because of the remaining unfilled pores. The decomposition temperature and the heat released were increased with increasing the concentration of the binders. The compaction response of the granules containing PVA 205 was more efficient than those containing PVA 217 and PVA 117. Green density was not dependent on the degree of hydrolysis of the binders. The compaction response of the granules spray-dried at 15$0^{\circ}C$ was most efficient.

  • PDF

Optical Properties of ZnO Soccer Ball Structures by Using Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Kim, Do-Yeob;Yim, Kwang-Gug;Kim, So-A-Ram;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.248-248
    • /
    • 2011
  • ZnO was grown on a Au-catalyzed Si(100) substrate by using a simple vapor phase transport (VPT) with a mixture of zinc oxide and graphite powders. The ZnO grown at 800$^{\circ}C$ had a soccer ball structure with diameters of <500 nm. The ZnO soccer ball structure was, for the first time, observed in this work. The optical properties of the ZnO soccer balls were investigated by photoluminescence (PL). In the room-temperature (RT) PL of the ZnO soccer balls, a strong near-band-edge emission (NBE) and a weak deep-level emission were observed at 3.25 and 2.47 eV (green emission), respectively. The weak deep-level emission (DLE) at around 2.47 eV (green emission) is caused by impurities and structural defects. The FWHM of the NBE peak from the ZnO soccer balls was 110 meV. In addition, the PL intensity ratio of the NBE to DLE was about 4. The temperature-dependent PL was also carried out to investigate the mechanism governing the quenching behavior of the PL spectra.

  • PDF

Electromagnetic Wave Absorption Characteristics of Y-type Barium Ferrite Prepared by the Glass-ceramic Method

  • Miki, Hiroki;Hori, Chinatsu;Nagae, Masahiro;Yoshio, Tetsuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1179-1180
    • /
    • 2006
  • Y-type barium ferrite ($Ba_2Me_2Fe_{12}O_{22};$ Me=Zn, Co, Cu) expected as an electromagnetic wave absorber were prepared by the glass-ceramic method. The glasses with composition of $0.1ZnO{\cdot}0.9(xB_2O_3{\cdot}yBaO{\cdot}(1-x-y)Fe_2O_3)$ were prepared. Single-phase powders of Y type barium ferrite were obtained with the composition $0.1ZnO{\cdot}0.9(0.2B_2O_3{\cdot}0.5BaO{\cdot}0.3Fe_2O_3)$. The shape of Y-type crystals depended strongly on the heating temperature and changed from a plate-like hexagon to a complex polyhedron with increasing heating temperature. Correlation was recognized between saturation magnetization and crystal shape. Electromagnetic wave absorption characteristics was affected by the saturation magnetization and crystal shape.

  • PDF

Crystal Structure and Electrochemical Properties of LiMn2-yMyO4 Cathode Material by Complex Substitution of Mg and Zn (Mg와 Zn의 복합치환에 따른 LiMn2-yMyO4 정극 활물질의 결정 구조 및 전기화학적 특성)

  • 정인성;정해덕;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.361-366
    • /
    • 2002
  • Spinel $LiMn_{2-y}M_yO_4$ and $LiMn_{2-y}M_yO_4$ (M=Mg, Zn) powders were synthesized by solid-state method at $800^{\circ}C$ for 37h. Crystal structure and electrochemical properties were analyzed by X-ray diffraction, charge-discharge test, cyclic voltammetry and ac impedance to $LiMn_{2-y}M_yO_4$. All cathode material showed spinel structure in X-ray diffraction. Ununiform distortion which calculated by (111) face and (222) face was almost constant in spite of the change of the kind and the substituting ratio of the metal cation in $LiMn_{2-y}M_yO_4$ (M=Mg, Zn). $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cell substituted $Mg^{+2}$ and $Zn^{+2}$ showed excellent discharge capacities than other cells, which it presented about 120mAh/g at the 1st cycle and about 73mAh/g at the 250th cycle, respectively. AC impedance of $LiMn_{2-y}M_yO_4/Li$ cells showed the similar resistance of about 65~110$\Omega$ before cycling.

Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries (아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성)

  • Sun, Ho-Jung;Cho, Myung-Yeon;An, Jung-Chul;Eom, Seungwook;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials (수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용)

  • Lim, JinYoung;Ahn, Jeongseok;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.

Observation of nano powders and fly ash usage effects on the fluidity features of grouts

  • Celik, Fatih;Yildiz, Oguzhan;Bozkir, Samet M.
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.13-28
    • /
    • 2022
  • The pumpability of the grouts is significant issue in concept of the rheological and workability properties during penetrating to voids and cracks. To improve the fluidity features of the grout mixes, the usage of Colloidal Nano Particular Powders (CNPPs) with mineral additives such as fly ash (FA) can contribute. Therefore, the main purpose of this study can be explained as investigating the usage effects of four types of Colloidal Nano Particular Powders (n-TiO2, n-ZnO, n-Al2O3 and n-SiO2) as nano additives on the rheological, workability and bleeding properties of cement-based grout incorporated with fly as. Test results showed that the usage of FA in the grout samples positively contribute to increase on the fluidity of the grout samples as expected. The dilatant behavior was observed from the results for all mixes. Observing the effect of nano-sized additives in such cement-based grout mixtures with high fluidity has presented remarkable effects in this study.