• Title/Summary/Keyword: ZnO hybrid

Search Result 88, Processing Time 0.031 seconds

Effects of strain on the optical and magnetic properties of Ce-doped ZnO

  • Xu, Zhenchao;Hou, Qingyu;Guo, Feng;Jia, Xiaofang;Li, Cong;Li, Wenling
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1465-1472
    • /
    • 2018
  • The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

Development of anti-corrosive coating technique for alloy plated steel sheet using silane based organic-inorganic hybrid materials (Silane계 유무기 하이브리드 적용 합금도금강판 내식성 향상 코팅 기술 개발)

  • Park, Jongwon;Lee, Kyunghwang;Park, Byungkyu;Hong, Shinhyub
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.295-303
    • /
    • 2013
  • Silane surface treatments have been developed as an alternative for toxic and carcinogenic chromate-based treatments for years. It is consistently observed that ultra-thin films offer excellent corrosion protection as well as paint adhesion to metals. The silane performance is comparable to, or in some cases better than, that of chromate layers. Based on the tetra-ethylorthosilicate(TEOS) and methlyl trieethoxysilane(MTES), inorganic sol was synthesized and formed hybrid networks with $SiO_2$ nano particle and polypropylene glycol(PPG) on Zn alloyed steel surface. According to SST results, addition of 10nm and 50nm $SiO_2$ nanoparticle in synthesized solution improved anti-corrosion property by its shear stress relaxation effect during curing process. Also, SST results were shown that anti-corrosive property was affected by the amounts of organic compounds.

Solution processed inverted organic solar cells with hybrid inorganic/organic cathode interlayers

  • Lee, Jung Suk;Cha, Myoung Joo;Park, Yu Jung;Kim, Jin Young;Seo, Jung Hwa;Walker, Bright
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.154.2-154.2
    • /
    • 2016
  • In this work, we introduce a solution-processed CdS interlayer for use in inverted bulk heterojunction (BHJ) solar cells, and compare this material to a series of standard organic and inorganic cathode interlayers. Different combinations of solution-processed CdS, ZnO and conjugated polyelectrolyte (CPE) layers were compared as cathode interlayers on ITO substrates to construct inverted solar cells based on $PTB7:PC_{71}BM$ and a $P3HT:PC_{61}BM$ as photoactive layers. Introduction of a CdS interlayer significantly improved the power conversion efficiency (PCE) of inverted $PTB7:PC_{71}BM$ devices from 2.0% to 4.9%, however, this efficiency was still fairly low compared to benchmark ZnO or CPE interlayers due to a low open circuit voltage ($V_{OC}$), stemming from the deep conduction band energy of CdS. The $V_{OC}$ was greatly improved by introducing an interfacial dipole (CPE) layer on top of the CdS layer, yielding outstanding diode characteristics and a PCE of 6.8%. The best performing interlayer, however, was a single CPE layer alone, which yielded a $V_{OC}$ of 0.727 V, a FF of 63.2%, and a PCE of 7.89%. Using $P3HT:PC_{61}BM$ as an active layer, similar trends were observed. Solar cells without the cathode interlayer yielded a PCE of 0.46% with a poor $V_{OC}$ of 0.197 V and FF of 34.3%. In contrast, the use of hybrid ZnO/CPE layer as the cathode interlayer considerably improved the $V_{OC}$ of 0.599 V and FF of 53.3%, resulting the PCE of 2.99%. Our results indicate that the CdS layer yields excellent diode characteristics, however, performs slightly worse than benchmark ZnO and CPE layers in solar cell devices due to parasitic absorption below 550 nm. These results suggest that the hybrid inorganic/organic interlayer materials are promising candidates as cathode interlayers for high efficiency inverted solar cells through the modification of interface contacts.

  • PDF

Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 System Glass for AlN Substrate (Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 계 유리가 적용된 질화알루미늄 기판용 RuO2계 친환경 후막저항의 전기적 특성 연구)

  • Kim, Min-Sik;Kim, Hyeong-Jun;Kim, Hyung-Tae;Kim, Dong-Jin;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.467-473
    • /
    • 2010
  • The objective of this study is to prepare lead-free thick film resistor (TFR) paste compatible with AlN substrate for hybrid microelectronics. For this purpose, CaO-ZnO-$B_2O_3-Al_2O_3-SiO_2$ glass system was chosen as a sintering aid of $RuO_2$. The effects of the weight ratio of CaO to ZnO in glass composition, the glass content and the sintering temperature on the electrical properties of TFR were investigated. $RuO_2$ as a conductive and glass powder were dispersed in an organic binder to obtain printable paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C$/min in an ambient atmosphere. The addition of ZnO to glass composition and sintering at higher temperature resulted in increasing sheet resistance and decreasing temperature coefficient of resistance. Using $RuO_2$-based resistor paste containing 40 wt%glass of CaO-20.5%ZnO-25%$B_2O_3$-7%$Al_2O_3$-15%$SiO_2$ composition, it is possible to produce thick film resistor on AlN substrate with sheet resistance of $10.6\Omega/\spuare$ and the temperature coefficient of resistance of 702ppm/$^{\circ}C$ after sintering at $850^{\circ}C$.

Eco-Friendly Emissive ZnO-Graphene QD for Bluish-White Light-Emitting Diodes

  • Kim, Hong Hee;Son, Dong Ick;Hwang, Do-Kyeong;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.627-627
    • /
    • 2013
  • Recently, most studies concerning inorganic CdSe/ZnS quantum dot (QD)-polymer hybrid LEDs have been concentrated on the structure with multiple layers [1,2]. The QD LEDs used almost CdSe materials for color reproduction such as blue, green and red from the light source until current. However, since Cd is one of six substances banned by the Restriction on Hazardous Substances (RoHS) directive and classified into a hazardous substance for utilization and commercialization as well as for use in life, it was reported that the use of CdSe is not suitable to fabricate a photoelectronic device. In this work, we demonstrate a novel, simple and facile technique for the synthesis of ZnO-graphene quasi-core.shell quantum dots utilizing graphene nanodot in order to overcome Cd material including RoHS materials. Also, We investigate the optical and structural properties of the quantum dots using a number of techniques. In result, At the applied bias 10 V, the device produced bluish-white color of the maximum brightness 1118 cd/$m^2$ with CIE coordinates (0.31, 0.26) at the bias 10 V.

  • PDF

Direct Synthesis of Dimethyl Ether from Synthesis Gas (합성가스로부터 디메틸에테르 직접 합성)

  • Hahm, Hyun-Sik;Kim, Song-Hyoung;Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.8-14
    • /
    • 2009
  • Dimethyl ether(DME) was synthesized from synthesis gas by a one-step process in which a hybrid catalyst was used. The hybrid catalyst consisted of Cu-ZnO-$Al_2O_3$ for the methanol synthesis reaction and aluminum phosphate or $H_3PO_4$-modified $\gamma$-alumina for the methanol dehydration reaction. The prepared catalysts were characterized by XRD, BET, SEM, FT-IR and $NH_3$-TPD. From the XRD analysis, it was verified that the aluminum phosphate was successfully synthesized. The specific surface areas of the synthesized aluminum phosphates were varied with the ratio of P/Al. The hybrid catalyst in which P/Al ratio of the aluminum phosphate was 1.2 showed the highest CO conversion of 55% and DME selectivity of 70%. There was no remarkable decrease in catalytic activity with the phosphoric acid treatment of $\gamma$-alumina. However, when treated with concentrated phosphoric acid(85%), the catalytic activity and DME selectivity decreased.

  • PDF

Hybrid Organic-Inorganic Films Fabricated Using Atomic and Molecular Layer Deposition Techniques

  • George, Steven M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.75.1-75.1
    • /
    • 2013
  • Atomic layer deposition (ALD) and molecular layer deposition (MLD) are based on sequential, self-limiting surface reactions that produce atomic layer controlled and conformal thin film growth. ALD can deposit inorganic films and MLD can deposit films containing organics. ALD and MLD can be used together to fabricate a wide range of hybrid organic-inorganic alloy films. The relative fraction of inorganic and organic constituents can be defined by controlling the ratio of the ALD and MLD reaction cycles used to grow the film. These hybrid films can be tuned to obtain desirable mechanical, electrical and optical properties. This talk will focus on the growth and properties of metal alkoxide films grown using metal precursors and various organic alcohols that are known as "metalcones". The talk will highlight the tunable mechanical properties of alucone alloys grown using Al2O3 ALD and alucone MLD and the tunable electrical conductivity of zincone alloys grown using ZnO ALD and zincone MLD with DEZ and hydroquinone as the reactants.

  • PDF

Electrically Stable Transparent Complementary Inverter with Organic-inorganic Nano-hybrid Dielectrics

  • Oh, Min-Suk;Lee, Ki-Moon;Lee, Kwang-H.;Cha, Sung-Hoon;Lee, Byoung-H.;Sung, Myung-M.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.620-621
    • /
    • 2008
  • Transparent electronics has been one of the key terminologies forecasting the ubiquitous technology era. Several researchers have thus extensively developed transparent oxide-based thin-film transistors (TFTs) on glass and plastic substrates although in general high voltage operating devices have been mainly studied considering transparent display drivers. However, low voltage operating oxide TFTs with transparent electrodes are very necessary if we are aiming at logic circuit applications, for which transparent complementary or one-type channel inverters are required. The most effective and low power consuming inverter should be a form of complementary p-channel and n-channel transistors but real application of those complementary TFT inverters also requires electrical- and even photo-stabilities. Since p-type oxide TFTs have not been developed yet, we previously adopted organic pentacene TFTs for the p-channel while ZnO TFTs were chosen for n-channel on sputter-deposited $AlO_x$ film. As a result, decent inverting behavior was achieved but some electrical gate instability was unavoidable at the ZnO/$AlO_x$ channel interface. Here, considering such gate instability issues we have designed a unique transparent complementary TFT (CTFTs) inverter structure with top n-ZnO channel and bottom p-pentacene channel based on 12 nm-thin nano-oxide/self assembled monolayer laminated dielectric, which has a large dielectric strength comparable to that of thin film amorphous $Al_2O_3$. Our transparent CTFT inverter well operate under 3 V, demonstrating a maximum voltage gain of ~20, good electrical and even photoelectric stabilities. The device transmittance was over 60 % and this type of transparent inverter has never been reported, to the best of our limited knowledge.

  • PDF

Kinetics on Direct Synthesis Dimethyl Ether (디메틸에테르의 직접반응 속도론)

  • Cho Wonihl;Choi Chang Woo;Baek YoungSoon;Row Kyung Ho
    • 한국가스학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.83-87
    • /
    • 2005
  • The kinetics of the direct synthesis of DME was studied under different conditions over a temperature range of $220\~280^{\circ}C$, syngas ratio $1.2\~ 3.0$ All experiment were carried out over hybrid catalyst, composed to a methanol synthesis catalyst (Cu/ZnO/$Al_2O_3$) and a dehydration Catalyst ($\gamma$-Al_2O_3$) The observed reaction rate qualitatively follows a Langmiur-Hinshellwood type of reaction mechanism. Such a mechanism is considered with three reaction, methanol synthesis, methanol dehydration and water gas shift reaction. From a surface reaction with dissociative adsorption of hydrogen, methanol and water, individual reaction rate was determined

  • PDF