• Title/Summary/Keyword: ZnO Varistor

Search Result 285, Processing Time 0.025 seconds

Current-Voltage and Impedance Characteristics of ZnO-Zn2BiVO6-Co3O4 Varistor with Temperature (ZnO-Zn2BiVO6-Co3O4 바리스터의 전류-전압 및 임피던스의 온도)

  • Hong, Youn Woo;Kim, You Bi;Paik, Jong Hoo;Cho, Jeong Ho;Jeong, Young Hun;Yun, Ji Sun;Park, Woon Ik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2016
  • This study introduces the characteristics of current-voltage (I-V) and impedance variance for $ZnO-Zn_2BiVO_6-Co_3O_4$ (ZZCo), which is sintered at $900^{\circ}C$, according to temperature changes. ZZCo varistor demonstrates dramatic improvement of non-linear coefficient, ${\alpha}=66$, with lower leakage current and higher insulating resistivity than those of ZZ ($ZnO-Zn_2BiVO_6$) from the aspect of I-V curves. While both systems are thermally stable up to $125^{\circ}C$, ZZCo represents a higher grain boundary activation energy with 1.05 eV and 0.94 eV of J-E-T and from IS & MS, respectively, than that of ZZ with 0.73 eV and 0.82 eV of J-E-T and from IS & MS, respectively, in the region above $180^{\circ}C$. It could be attributed to the formation of $V^*_o$(0.41~0.47 eV) as dominant defect in two systems, as well as the defect-induced capacitance increase from 781 pF to 1 nF in accordance with increasing temperature. On the other hand, both the grain boundary capacitances of ZZ and ZZCo are shown to decrease to 357 pF and 349 pF, respectively, while the resistances systems decreased exponentially, in accordance with increasing temperature. So, this paper suggests that the application of newly formed liquid phases as sintering additives in both $Zn_2BiVO_6$ and the ZZCo-based varistors would be helpful in developing commercialized devices such as chips, disk-type ZnO varistors in the future.

Electrical Properties of ZnO Varistors with Variation of Glass Addition (Glass 첨가량에 따른 ZnO 바리스터의 전기적 특성)

  • Cho, Hyun-Moo;Lee, Jong-Deok;Park, Sang-Man;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.815-820
    • /
    • 2005
  • ZnO varistor ceramics were fabricated with variation of addition of glass-frit amount and the sintering temperature was $1100^{\circ}C$. The average grain sizes were showed increased from $8.6{\mu}m\;to\;10{\mu}m$, and varistor voltages were decreased from 506V to 460V by added amount of glass-frit. Nonlinear coefficient $\alpha$, of all were with increasing the amount of glass-frit more than 70, in case of added on $0.03wt\%$ glass-frit was 83. And leakage current were less than $1{\mu}A$ with applied at $82\%$ of varistor voltage. The clamping voltage ratio of the specimens added $0.03wt\%$ glass-frit was 1.41 at applied 25A $[8/20\;{\mu}s]$. In the specimen added $0.03wt\%$ glass-frit, endurance of surge current and deviation of varistor voltage were $6200A/cm^2,\;\Delta-1.67\%$, respectively and clamping voltage ratio was 2.33. In the Specimen added $0.03wt\%$ glass-frit were superior to any other compositions on High Temperature Load Test(HTLT) for 1000 hr at $85^{\circ}C$, and deviation of the varistor voltage were $\Delta-1.29\%$.

Fabrication of ZnO Varistor Using Secondary Seed Grains (2차 Seed Grain을 사용한 ZnO 바리스터의 제조)

  • Kim, Hyung-Joo;Mah, Jae-Pyung;Paek, Su-Hyon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.95-100
    • /
    • 1990
  • We fabricated primary and secondary seed grains. Primary seed grains having larger grain size were obtained under the conditions that were 2.0mol.% $BaCO_3$ and 10 hours sintering. The amount of primary seed grain that yield the largest secondary seed grain was chosen as 3wt.% and we fabricated the low voltage varistors which were jointed the low voltage-oriented ZnO varistor system made by conventional method with the secondary seed grains. As a result, the ZnO varistors under those conditions showed approximately 10V/mm of nonlinear resistance and 15-22 of nonlinear exponent.

  • PDF

Degradation Mechanism of the ZnO-Varistor Fabricated with the content of a 3-Composition Seed grain (3-성분 종입자법으로 제조된 ZnO-Varistor의 열화기구)

  • 장경욱;박춘배;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.97-100
    • /
    • 1992
  • The Degradation mechanism of the ZnO-varistor fabricated with the content of a 3-Composition seed grain is discussed using the method of Thermally Stimulated Current (TSC). The spectra of TSC is measured in the temperature range of -130~270$^{\circ}C$ with a various forming electric fields E$\sub$f/, temperature T$\sub$f/ time tf, and a various rising rate of temperature. It is observed that there are appeared the peaks of ${\alpha}$, ${\alpha}$$_2$, ${\beta}$ and ${\gamma}$from high temperature in a TSC spectrum. It seems that ${\alpha}$$_1$ peak is due to thermal depolarization of donor ions forming the space charge in the depletion layer, and ${\alpha}$$_2$peak is due to the detrapping of trapped electrons in deep trap level of intergranular layer, and ${\beta}$ peak is due to the thermal exciting of carrier existing in the donor level of grain itself, and ${\gamma}$ peak is due to the thermal exciting of trapped carrier in all shallow trap site randomly distributed in the inner of sample and/or a intrinsic impurity existing in it.

  • PDF

Effects of Grain-Size Distribution on the Breakdown Voltage in ZnO Varistors (입도분포가 ZnO 바리스터의 임계전압에 미치는 영향)

  • 김경남;한상목;김대수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.199-205
    • /
    • 1993
  • Effects of grain size distribution on the breakdown voltage of ZnO varistors were investigated in the ZnO-Bi2O3-CoO-Sb2O3 and ZnO-Bi2O3-CoO-Sb2O3-Cr2O3 systems, respectively. The grain size was increased with increasing sintering temperature maintaining lognormal distribution in both systems. The width of grain size distribution of ZnO-Bi2O3-CoO-Sb2O3 system was narrower than that of ZnO-Bi2O3-CoO-Sb2O3 system. The breakdown voltage(Vb) was decreased by increasing sintering temperature(1000~135$0^{\circ}C$) and sintering time(0.5~5hr), due to the enhancement of ZnO grain growth. The current path of the ZnO varistor was dependent on the distribution of the largest grains (chains of long grains) between the electrodes.

  • PDF

Electrical Characteristics of ZnO-Pr6O11-CoO-Cr2O3-Y2O3 -Based Varistor Ceramics (ZnO-Pr6O11-CoO-Cr2O3-Y2O3계 바리스터 세라믹스의 전기적 특성)

  • 남춘우;김향숙
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.664-670
    • /
    • 2002
  • The electrical characteristics of $ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Y_2O_3$(ZPCCY)-based varistors were investigated with $Y_2O_3$ content in the range of 0.0~4.0 mol%. As $Y_2O_3$ content is increased, the average grain size was markedly decreased in the range of 18.6~3.2 $\mu m$ and the density of the ceramic was decreased in the range of 5.53 ~3.74 $g/\textrm{cm}^3$. While, the varistor voltage was increased in the range of 39.4~748.1 V/mm and the nonlinear exponent was in the range of 4.5~51.2 with increasing $Y_2O_3$ content. The addition of $Y_2O_3$ greatly enhanced the nonlinear properties of varistors, compared with the varistor without $Y_2O_3$. In particular, the varistors with $Y_2O_3$content of 0.5 mol% exhibited the highest nonlinearity, in which the nonlinear exponent is 51.2 and the leakage current is 1.3 $\mu A$. The donor concentration and the density of interface states were decreased in the range of (4.19~0.14) $\times$10$^{18}$ /㎤ and (5.38~1.15)${\times}10^{18}/\textrm{cm}^3$, respectively, with increasing $Y_2O_3$ content.

Microstructure and Varistor Characteristics of ZnO-Pr6O11-CoO-Cr2O3-Dy2O3-Based Varistors (ZnO-Pr6O11-CoO-Cr2O3-Dy2O3계 세라믹스의 미세구조 및 바리스터 특성)

  • 남춘우;박종아;김명준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.897-901
    • /
    • 2003
  • The microstructure and varistor characteristics of ZnO-Pr$_{6}$O$_{11}$-CoO-Cr$_2$O$_3$-Dy$_2$O$_3$(ZPCCD)-based ceramics were investigated with Dy$_2$O$_3$ content in the range of 0.0∼2.0 mol%. As Dy$_2$O$_3$ content is increased, the average grain size was decreased in the range of 18.6∼4.7 $\mu$m and the density was decreased in the range of 5.53∼4.34 g/cm$^3$. While, the varistor voltage was increased in the range of 39.4∼436.6 V/mm and the nonlinear exponent was in the range of 4.5-66.6 with increasing Dy$_2$O$_3$ content. The addition of Dy$_2$O$_3$ highly enhanced the nonlinear properties of varistors, compared with the ceramics without Dy$_2$O$_3$ Particularly, the ceramics with Dy$_2$O$_3$ content of 0.5 mol% exhibited the highest nonlinearity, in which the nonlinear exponent is 66.6 and the leakage current is 1.2 $\mu$A.A.A.

Electrical and Dielectric Characteristics of Zn-Pr-Co-Dy-M(M=Ni, Mg, Cr) Oxides-Based Varistors (Zn-Pr-Co-Dy-M(M=Ni, Mg, Cr) 산화물계 바리스터의 전기적, 유전적 특성)

  • 남춘우;박종아
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.924-929
    • /
    • 2004
  • The microstructure, electrical and dielectric characteristics of $ZnO-{Pr}_6{O}_11-{CoO}-{Dy}_2{O}_3$-based varistors were investigated without and with various metal oxide additives(NiO, MgO, Cr$_2$O$_3$). The average grain size decreased in the range of 18.4 $\backsim$ 11.5 $\mu$m, in order of NiO\longrightarrowMgO\longrightarrow{Cr}_2{O}_3$ and the density decreased in the range of 5.62 \backsim 5.33 $g/{cm}^3$ in order of NiO\longrightarrowCr$_2$O$_3$\longrightarrowMgO. While, the nonlinear exponent increased In the range of 19.8$\backsim$67.4 in order of NiO\longrightarrowMgO\longrightarrow${Cr}_2{O}_3$ and the leakage current decreased in the range of 25.6 $\backsim$ 1.2 $\mu$A in order of NiO\longrightarrow${Cr}_2{O}_3$\longrightarrowMgO. Among all varistors, the Cr$_2$O$_3$-added varistor exhibited the highest nonlinearity, with a nonlinear exponent of 67.4 and a leakage current of 1.2 $\mu$A. Furthermore, this varistor exhibited the lowest dielectric dissipation factor of 0.0407.

A Study of Electrical Characteristics for ZnO Varistor in HST (전철용 ZnO 바리스타(IEC 10kA)의 전기적 특성 연구)

  • Hwang, M.K.;Youn, B.H.;Huh, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1519-1521
    • /
    • 1998
  • A Gapless HST(high speed train) arrester design is not possible without the highly non-linear ZnO(ZincOxide) varistors. Zno varistors combine excellent protective characteristics with steady state performance to maximize protection, the ZnO varistors are selected for each unit based on leakage current and residual voltage, to verify that the residual voltage is the residual voltage published for HST arrester.

  • PDF

Sintering and Electrical Properties of Mn-doped ZnO-CaO Varistor (Mn 첨가에 따른 ZnO-CaO 바리스터의 소결 및 전기적 특성)

  • Lee, Jae-Ho;Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Moon, Joo-Ho;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.310-310
    • /
    • 2010
  • ZnO 바리스터는 정전기 (ESD) 및 순간적인 써지(surge)로부터 전자기기 및 전자회로 등을 보호하기 위해 개발된 전자 세라믹스 소재이다. 최근 전자기기 등의 고속통신 추세에 따라 ZnO 바리스터는 높은 비선형 특성과 함께 보다 낮은 유전율 및 유전손실 특성이 특별히 요구되고 있다. 본 연구에서는 현재 양산되고 있는 Bi-계와 Pr-계 ZnO 바리스터가 아닌 새로운 조성계에 $Mn_3O_4$를 0.0~3.0 at% 첨가하여 소결 및 전기적 특성들 살펴보았다. 시편은 일반적인 세라믹 공정에 따라 제조하여 $1200^{\circ}C$에서 1 시간 공기 중에서 소결하였으며, 소결 및 전기적 특성과 유전 특성(밀도, 미세구조, I-V 특성, 유전율, 유전손실, ZnO 비저항)은 FE-SEM, Keithley237, Agilent 4294a 및 Agilent 4991a 장비를 사용하여 첨가제에 따른 ZnO 바리스터의 특성 변화를 관찰하였다. 그 결과 Mn이 0.2 at% 첨가한 계의 바리스터의 상대밀도는 95%, 비선형계수는 14, 유전율은 140 (at 1MHz), 손실값은 0.147 (at 1 MHz)를 나타내었다. 이를 통하여 새로운 바리스터 조성계에서 Mn의 첨가에 따른 효과에 대하여 논하였다.

  • PDF