• Title/Summary/Keyword: ZnO Nanoparticles

Search Result 244, Processing Time 0.03 seconds

Synthesis of nano-sized Ga2O3 powders by polymerized complex method (착체중합법을 이용한 Ga2O3 나노 분말의 합성)

  • Jung, Jong-Yeol;Kim, Sang-Hun;Kang, Eun-Tae;Han, Kyu-Sung;Kim, Jin-Ho;Hwang, Kwang-Teak;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.302-308
    • /
    • 2013
  • In this study, we report the synthesis and characteristics of gallium oxide ($Ga_2O_3$) nanoparticles prepared by the polymerized complex method. $Ga_2O_3$ nanoparticles were synthesized using $Ga(NO_3)_3$, ethylene glycol, and citric acid as the starting materials at a low temperature of $500{\sim}800^{\circ}C$. The temperature of the weight reduction by the loss of organic precursor was revealed using TG-DTA analysis. The crystal structural change of $Ga_2O_3$ nanoparticles by the annealing process was investigated by XRD analysis. The morphologies and the size distributions of $Ga_2O_3$ nanoparticles were analyzed using SEM.

Silica-encapsulated ZnSe Quantum Dots as a Temperature Sensor Media (온도센서용 실리카에 담지된 ZnSe 양자점 소재)

  • Lee, Ae Ri;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.362-365
    • /
    • 2015
  • Silica encapsulated ZnSe quantum dots (QDs) were prepared by employing two microemulsion systems: AOT/water/cyclohexane microemulsions containing ZnSe quantum dots with NP5/water/cyclohexane microemulsions containing tetraethylorthosilicate (TEOS). Using this method, cubic zinc blende nanoparticles (3 nm in diameter) were synthesized and encapsulated by silica nanoparticles (20 nm in diameter). The temperature dependence of photoluminescence (PL) for silica-encapsulated ZnSe QDs was investigated to evaluate this material as a temperature sensor media. The fluorescence emission intensity of silica-encapsulated ZnSe nanoparticles (NPs) was decreased with an increase of ambient temperature over the range from $30^{\circ}C$ to $60^{\circ}C$ and a linear relationship between the temperature and the emission intensity was observed. In addition, the temperature dependence of PL intensity for silica-encapsulated ZnSe NPs showed a reversible pattern on ambient temperature. A reversible temperature dependence of the luminescence combined with its insensitivity toward quenching by oxygen due to silica coating established this material as an attractive media for temperature sensor applications.

Effects of Co Doping on NO Gas Sensing Characteristics of ZnO-Carbon Nanotube Composites (산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성에 미치는 코발트 첨가 효과)

  • Jung, Hoon-Chul;Ahn, Eun-Seong;Hung, Nguyen Le;Oh, Dong-Hoon;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.607-612
    • /
    • 2009
  • We investigated the effects of Co doping on the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with ZnO using pulsed laser deposition. Structural examinations clearly confirmed a distinct nanostructure of the CNTs coated with ZnO nanoparticles of an average diameter as small as 10 nm and showed little influence of doping 1 at.% Co into ZnO on the morphology of the ZnO-CNT composites. It was found from the gas sensing measurements that 1 at.% Co doping into ZnO gave rise to a significant improvement in the response of the ZnO-CNT composite sensor to NO gas exposure. In particular, the Co-doped ZnO-CNT composite sensor shows a highly sensitive and fast response to NO gas at relatively low temperatures and even at low NO concentrations. The observed significant improvement of the NO gas sensing properties is attributed to an increase in the specific surface area and the role as a catalyst of the doped Co elements. These results suggest that Co-doped ZnOCNT composites are suitable for use as practical high-performance NO gas sensors.

Effect of Additive Ammonium Hydroxide on ZnO Particle Properties Synthesized by Facile Glycol Process

  • Phimmavong, Kongsy;Hong, Seok-Hyoung;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.481-487
    • /
    • 2021
  • ZnO particles are successfully synthesized at 150 ℃ for 30 min using zinc acetate as the Zn source and 1,4-butanediol as solvent using a relatively facile and convenient glycol process. The effect of ammonium hydroxide amounts on the growth behavior and the morphological evolution of ZnO particles are investigated. The prepared ZnO nanoparticle with hexagonal structure exhibits a quasi-spherical shape with an average crystallite size of approximately 30 nm. It is also demonstrated that the morphology of ZnO particles can be controlled by 1,4-butanediol with an additive of ammonium hydroxide. The morphologies of ZnO particles are changed sequentially from a quasi-spherical shape to a rod-like shape and a hexagonal rod shape with a truncated pyramidal tip, exhibiting preferential growth along the [001] direction with increasing ammonium hydroxide amounts. It is demonstrated that much higher OH- amounts can produce a nano-tip shape grown along the [001] direction at the corners and center of the (001) top polar plane, and a flat hexagonal symmetry shape of the bottom polar plane on ZnO hexagonal prisms. The results indicate that the presence of NH4+ and OH- ions in the solution greatly affects the growth behaviors of ZnO particles. A sharp near-band-edge (NBE) emission peak centered at 383 nm in the UV region and a weak broad peak in the visible region between 450 nm and 700 nm are shown in the PL spectra of the ZnO synthesized using the glycol process, regardless of adding ammonium hydroxide. Although the broad peak of the deep-level-emission (DLE) increases with the addition of ammonium hydroxide, it is suggested that the prominent NBE emission peaks indicate that ZnO nanoparticles with good crystallization are obtained under these conditions.

Influence of Metal Oxide Particles on Soil Enzyme Activity and Bioaccumulation of Two Plants

  • Kim, Sunghyun;Sin, Hyunjoo;Lee, Sooyeon;Lee, Insook
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1279-1286
    • /
    • 2013
  • Particle size and metal species are important to both soil microbial toxicity and phytotoxicity in the soil ecosystem. The effects of CuO and ZnO nanoparticles (NPs) and microparticles (MPs) on soil microbial toxicity, phytotoxicity, and bioaccumulation in two crops (Cucumis sativus and Zea mays) were estimated in a soil microcosm. In the microcosm system, soil was artificially contaminated with 1,000 mg/kg CuO and ZnO NPs and MPs. After 15 days, we compared the microbial toxicity and phytotoxicity by particle size. In addition, C. sativus and Z. mays were cultivated in soils treated with CuO NPs and ZnO NPs, after which the treatment effects on bioaccumulation were evaluated. NPs were more toxic than MPs to microbes and plants in the soil ecosystem. We found that the soil enzyme activity and plant biomass were inhibited to the greatest extent by CuO NPs. However, in a Biolog test, substrate utilization patterns were more dependent upon metal type than particle size. Another finding indicated that the metal NP uptake amounts of plants depend on the plant species. In the comparison between C. sativus and Z. mays, the accumulation of Cu and Zn by C. sativus was noticeably higher. These findings show that metal oxide NPs may negatively impact soil bacteria and plants. In addition, the accumulation patterns of NPs depend on the plant species.

Chemically Modified Superhydrophobic Zinc Oxide nanoparticle surface

  • Lee, Mi-Gyeong;Gwak, Geun-Jae;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.448-448
    • /
    • 2011
  • We investigated the fabrication method of superhydrophobic nanocoating prepared by a simple spin-coating and the chemisorption of fatty acid. The resulting coating showed a tremendous water repellency (static water contact angle = $154^{\circ}$) and the water contact angle can be modulated by changing the number of deposition cycles of ZnO and the carbon length of Self-Assembled Monolayers (SAM). Varying the number of deposition cycles of ZnO controlled the surface roughness, and affected to the superhydrophobicity. This simple coating method can be universally applicable to any substrates including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below $250^{\circ}C$ and under dynamic conditions.

  • PDF

Photoelectron Spectroscopy Study of the Semiconductor Electrode Nanomaterials for the Dye Synthesized Solar Cell (염료감응 태양전지 전극용 반도체 나노 물질의 광전자분광 연구)

  • Kim, Hyun Woo;Lee, Eunsook;Kim, D.H.;Seong, Seungho;Kang, J.-S.;Moon, S.Y.;Shin, Yuju
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.156-161
    • /
    • 2015
  • The electronic structures of the potential candidate semiconductor nanoparticles for dye-sensitized solar cell (DSSC), such as $ZnSnO_3$ and $Zn_2SnO_4$, have been investigated by employing X-ray photoemission spectroscopy (XPS). The measured X-ray diffraction patterns show that $ZnSnO_3$ and $Zn_2SnO_4$ samples have the single-phase ilmenite-type structure and the inverse spinel structure, respectively. The measured Zn 2p and Sn 3d core-level XPS spectra reveal that the valence states of Zn and Sn ions are divalent (Zn 2+) and tetravalent (Sn 4+), respectively, in both $ZnSnO_3$ and $Zn_2SnO_4$. On the other hand, the shallow core-level measurements show that the binding energies of Sn 4d and Zn 3d core levels in $ZnSnO_3$ are lower than those in $Zn_2SnO_4$. This work provides the information on the valence states of Zn and Sn ions and their chemical bonding in $ZnSnO_3$ and $Zn_2SnO_4$.

Microstructure and Magnetic Property of Nanostructured NiZn Ferrite Powder

  • Nam, Joong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1119-1123
    • /
    • 2002
  • Nanostructured spinel NiZn ferrites were prepared by the sol-gel method from metal nitrate raw materials. Analyses by X-ray diffraction and scanning electron microscopy showed the average particle size of NiZn ferrite was under 50 nm. The single phase of NiZn ferrites was obtained by firing at 250${\circ}C$, resulting in nanoparticles exhibiting normal ferrimagnetic behavior. The nanostructured $Ni_{1-X}Zn_XFe_2O_4$ (x=0.0∼1.0) were found to have the cubic spinel structure of which the lattice constants ${\alpha}_2$ increases linearly from 8.339 to 8.427 ${\AA}$ with increasing Zn content x, following Vegard's law, approximately. The saturation magnetization $M_s$ was 48 emu/g for x=0.4 and decreased to 8.0 emu/g for higher Zn contents suggesting the typical ferrimagnetism in mixed spinel ferrites. Pure NiZn ferrite phase substituted by Cu was observed before using the additive but hematite phase was partially appeared at $Ni_{0.2}Zn_{0.2}Cu_{0.6}Fe_2O_4$. On the other hand, the hematite phase in this NiZn Cu ferrite was disappeared after using the additive of acethyl aceton with small amount. The saturation magnetization Ms of $Ni_{0.2}Zn_{0.8-y}Cu_yFe_2O_4$(y=0.2∼0.6) as measured was about 51 emu/g at 77K and 19 emu/g at room temperature, respectively.

Synthesis and Characterization of ZnS and ZnS/TiO2 Nanocomposites and Their Enhanced Photo-decolorization of MB and 1,5-Diphenyl Carbazide

  • Meng, Ze-Da;Ullah, Kefayat;Zhu, Lei;Ye, Shu;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.307-311
    • /
    • 2014
  • ZnS and $ZnS/TiO_2$ were prepared by chemical deposition. The prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM). The generation of reactive oxygen species was detected by monitoring the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). Excellent catalytic degradation of methylene blue (MB) solution was observed using the $ZnS/TiO_2$ composites during irradiation with visible light. The results show that the photocatalytic performance of $TiO_2$ nanoparticles is improved by loading with ZnS.

NO Gas Sensing Characteristics of Layered Composites of Carbon Nanotubes Coated with Al-Doped ZnO (탄소나노튜브를 알루미늄이 첨가된 산화아연으로 코팅한 층상 복합체의 일산화질소 가스 감지 특성)

  • Ahn, Eun-Seong;Jung, Hoon-Chul;Nguyen, Nguyen Le;Oh, Dong-Hoon;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.631-636
    • /
    • 2009
  • We investigated the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with a thin layer of 1 wt% Al-doped ZnO using rf magnetron sputtering deposition. Morphological studies clearly revealed that the ZnO appeared to form beadshaped crystalline nanoparticles with an average diameter as small as 30 nm, attaching to the surface of the nanotubes. It was found that the NO gas sensing properties of the ZnO-CNT layered composites were dramatically improved over Al-doped ZnO thin films. It is reasoned from these observations that an increase in the surface-to-volume ratio associated with the numerous ZnO “nanobeads” on the surface of the CNTs results in the enhancement of the NO gas sensing properties. The ZnO-CNT layered composite sensors exhibited a maximum sensitivity of 13.7 to 2 ppm NO gas at a temperature of 200${^{\circ}C}$ and a low NO gas detection limit of 0.2 ppm in dry air.