• Title/Summary/Keyword: ZnO : Al thin film

Search Result 367, Processing Time 0.031 seconds

Crystallography properties of $ZnO/AZO/SiO_2/Si$ thin film for FBAR (FBAR용 $ZnO/AZO/SiO_2/Si$ 박막의 결정학적 특성에 관한 연구)

  • Kang, Tai-Young;Keum, Min-Jong;Son, In-Hwan;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.880-883
    • /
    • 2003
  • ZnO thin films for Film Bulk Acoustic Resonator(FBAR) were prepared by FTS (Facing Target Sputtering) system. The FTS methode enable to generate high density plasma, and it has a high deposition rate at 1mTorr pressure. Therefore, the ZnO thin films were deposited on $AZO/SiO_2/Si$ substrates with oxygen gas flow rate, and the other sputtering conditions were fixed such as a sputtering current of 0.8A, a substrate temperature at room temperature. AZO bottom electrode were deposited on $SiO_2/Si$ substrate and by Zn:Al(Al:2wt%) metal target. ZnO thin film thickness and the c-axis preferred orientation of ZnO thin film were evaluated by ${\alpha}-step$ and XRD.

  • PDF

The Deposition and Properties of Surface Textured ZnO:Al Films (표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

The fabrication and properties of surface textured ZnO:Al films (Surface Textured ZnO:Al 투명전도막 제작 및 특성)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.391-394
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCl (0.5%) to examine the electrical and surface morphology Properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9 mTorr) and high substrate temperatures ($\leq$30$0^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate (플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성)

  • Jessie, Darma;Park, Byung-Wook;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

A Study on the Deposition Characteristics of ZnO Piezoelectric Thin film Bulk Acoustic Resonator (FBAR 응용을 위한 ZnO 압전 박막의 증착 특성에 관한 연구)

  • 최승혁;김종성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.716-722
    • /
    • 2003
  • ZnO thin films were deposited on Al and Pt electrodes by an RF reactive sputtering system for the fabrication of FBAR (film bulk acoustic wave resonator), and the effect of thermal treatment temperature on their c-axis preferred orientation was investigated. SEM experiments show that columnar structure of ZnO thin films were grown with c-axis normal to electrode material, and XRD experiments show that both ZnO films were grown with (002) plane preferred orientation, but larger diffraction peak was observed with Pt electrode. The peak intensity increased with higher thermal treatment temperature, but c-axis preferred orientation was diminished. The surface roughness of Al thin film was higher than that of Pt, and these affect the surface roughness of ZnO film deposited on the electrode. Though the preferred orientation with respect to Pt(111) plane was improved with higher thermal treatment temperature, this could not improve the c-axis orientation of ZnO film.

Characteristics of nanocrystalline ZnO films grown on polyctystalline AlN for wireless chemical sensors (무선 화학센서용으로 다결정 AlN 위에 성장된 나노결정질 ZnO 막의 특성)

  • Song, Le Thi;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.252-252
    • /
    • 2009
  • In this work, the nanocrystalline ZnO/polycrystalline (poly) aluminum nitride (AlN)/Si structure was fabricated for humidity sensor applications based on surface acoustic wave (SAW). In this structure, the ZnO film was used as sensing material layer. These ZnO and AlN(0002) were deposited by so-gel process and a pulse reactive magnetron sputtering, respectively. These experimental results showed that the obtained SAW velocity on AlN film was about 5128 m/s at $h/\lambda$=0.0125 (h and $\lambda$ is thickness and wavelength, respectively). For ZnO sensing layers coated on AlN, films have hexagonal wurtzite structure and nanometer particle size. The crystalline size of ZnO films annealed at 400, 500, and 600 $^{\circ}C$ is 10.2, 29.1, and 38 nm, respectively. Surface of the film exhibits spongy which can adsorb steam in the air. The best quality of the ZnO film was obtained with annealing temperature at 500 $^{\circ}Cis$. The change in frequency response (127.9~127.85 MHz) of the SAW humidity sensor based on ZnO/AlN structure was measured along the change in humidity (41~69%). The structural properties of thin films wereinvestigated by XRD and SEM.

  • PDF

Properties of ZnO:Al Thin Films Deposited by RF Magnetron Sputtering with Various Base Pressure (RF Magnetron Sputtering법으로 제작한 ZnO:Al 박막의 초기 압력에 따른 특성)

  • Kim, D.K.;Kim, H.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.141-145
    • /
    • 2011
  • ZnO:Al thin films were deposited by RF magnetron sputtering with various base pressure, and their structural, optical, and electrical properties were studied. The influence of the base pressure on the ZnO:Al thin film was confirmed and a high-quality thin film was obtained by controlling the base pressure. In all Al-doped ZnO thin films, the preferred orientation of (002) plane was observed and light transmittance in visible region (400 nm~800 nm) had above 85%. With decreasing of base pressure, crystallinity, resistivity, and figure of merit were improved. The improvement of resistivity with base pressure was attributed to the change of grain size.

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers (플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Choo, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

Fabrication and Study of Transparent Conductive Films ZnO(Al) and ZnO(AlGa) by DC Magnetron Sputtering (DC 마그네트론 스퍼터링법에 의한 대면적 투명전도성 ZnO(Al)와 ZnO(AlGa) 박막제조 및 물리적 특성 연구)

  • Son, Young Ho;Choi, Seung Hoon;Park, Joong Jin;Jung, Myoung Hyo;Hur, Youngjune;Kim, In Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.119-125
    • /
    • 2013
  • In this study, we studied the properties of ZnO(Al) and ZnO(AlGa) thin film according to film thickness deposited on SLG by In-line magnetron sputtering system. XRD, FESEM, 4-point probe, Hall measurement system and UV/Vis-NIR spectrophotometer were employed to analyze the properties of ZnO(Al) and ZnO(AlGa) thin film. The all films exhibited (002) preferential orientation with clear peak shape and high intensity. The carrier concentration and Hall mobility of ZnO(Al) and ZnO(AlGa) thin film were improved with increasing thickness. The resistivity of both films decreased when the film thickness was raised from 500 nm to 1,450 nm. And then relatively the resistivity of ZnO(AlGa) film was lower than that of ZnO(Al) film. The transmittance of the films decreased with increasing film thickness but all films exhibited optical transmittances of over 83.3% in the visible region.