• Title/Summary/Keyword: ZnO : Al

Search Result 1,170, Processing Time 0.03 seconds

Preparation and Reactivity of ZnO-Al$_2$O$_3$ Desulfurization Sorbents for Removal H$_2$S ($H_2S$제거를 위한 ZnO-$Al_2O_3$ 탈황제의 제조 및 반응특성 연구)

  • 박노국;이종욱;류시옥;이태진;김재창
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.136-141
    • /
    • 2002
  • Advanced zinc-based sorbents, ZA, for Hot Gas Desulfurization (HGD) process in Integrated Gasification Combined Cycle (IGCC) systems were formulated with $Al_2$O$_3$ as support to enhance the reactivity and their reactive characteristics was also investigated in this study. Changes in the physical and chemical properties of the sorbents based on both the mole ratios of ZnO/Al$_2$O$_3$ and the calcination temperatures were examined by a XRD. The results obtained in our desulfurization-regeneration cycle tests demonstrated that degradation of sorbents due to the heat generation could be improved through the optimization of the $Al_2$O$_3$ contents and of the calcination temperatures. From the durability study it is concluded that the prepared ZA sorbents with additives have the desirable features for HGD.

Al Doping and Post Annealing Effects of Pyrosol Deposited ZnO Thin Films (Pyrosol 법에 의한 ZnO 투명전도막의 Al Doping 및 열처리 효과)

  • Song, Jin-Soo;Yu, Kwon-Jong;Lee, Chang-Hyun;Cho, Woo-Yeong;Lim, Keong-Su;Eom, Young-Chang
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1301-1304
    • /
    • 1994
  • ZnO transparent conducting oxide thin films have been prepared by Pyrosol deposition method. The effect of the Al doping with varying Al/Zn mole ratio and the post-deposition heat treatment on the electrical resistivity and optical transmittance of the prepared films have been investigated. From the experimental results, the ZnO:Al thin films with resistivity as low as $3{\times}10^{-3}{\Omega}cm$ and transmittance as high as 80% can be obtained by Al doping. Also We have found the annealing of the as-deposited ZnO film in vacuum leads to a substantial reduction in resistivity without affecting the optical transmittance and crystallographic orientation. However, the annealing effect of ZnO:Al thin films is smaller than ZnO films with respect to reduction in resistivity.

  • PDF

Analysis of Electrical Property of Room Temperature-grown ZnO:Al Thin films Annealed in Hydrogen Ambient (수소 분위기에서 후열처리한 상온증착 ZnO:Al 박막의 전기적 특성 분석)

  • Jeong, Yun-Hwan;Chen, Hao;Jin, Hu-Jie;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.318-322
    • /
    • 2009
  • In this paper, to establish growth technology of ZnO:Al thin films at low temperature applied to photoelectronic devices, ZnO:Al were prepared by RF magnetron sputtering on glass substrate at room temperature using different RF power with subsequent annealing process at different temperature in $H_2$ ambient. The resistivity of hydrogen-annealed ZnO:Al thin film at temperature of $300^{\circ}C$ was reduced to $8.32{\times}10^{-4}{\Omega}cm$ from $9.44{\times}10^{-4}{\Omega}cm$ which was optimal value for as-grown films. X-ray photoelectron spectroscopy(XPS) revealed that improved electrical properties are ascribed to desorption of the negatively charged oxygen species from the grain boundary surfaces by the hydrogen annealing process.

전기화학적증착법(ECD)을 사용해 형성한 성장 시간에 따른 Al-doped ZnO 나노결정체의 구조적 성질 및 광학적 성질

  • Chu, Dong-Hun;Kim, Gi-Hyeon;No, Yeong-Su;Lee, Dae-Uk;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.262.2-262.2
    • /
    • 2013
  • ZnO는 광학적 및 전기적 성질의 여러 가지 장점 때문에 메모리, 나노발전기, 트랜지스터, 태양전지, 광탐지기 및 레이저와 같은 전자소자 및 광소자로 여러 분야에서 다양하게 사용되고 있다. Al이 도핑된 ZnO 나노결정체를 전기화학적 증착법을 이용하여 형성하고, 형성시간의 변화에 따른 구조적 및 광학적 성질을 관찰했다. ITO로 코팅된 유리 기판에 전기화학증착법을 이용해 Al 도핑된 ZnO를 성장시켰다. Sputtering, pulsed laser vapor deposition, 화학기상증착, atomic layer epitaxy, 전자빔증발법 등으로 Al 도핑된 ZnO 나노구조를 형성할 수 있지만, 본 연구에서는 간단한 공정과정, 저온증착, 고속, 저가의 특성 등으로 경제적인 면에서 효율적인 전기화학증착법을 이용했다. 반복실험을 통하여 Al의 도핑 농도는 Zn와 Al의 비율이 98:2이 되도록, ITO 양극과 Pt 음극의 전위차가 -2.25 V가 되도록 실험조건을 고정했고, 성장시간을 각각 1분, 5분, 10분으로 변화하였다. 주사전자현미경 사진을 보면 Al 도핑된 ZnO는 성장 시간이 증가함에 따라 나노구조의 직경이 커지는 것을 알 수 있다. 광루미네센스 측정 결과는 산소 공핍의 증가로 보이는 500~600 nm대의 파장에서 나타난 피크의 위치가 에너지가 큰 쪽으로 증가했다. 위 결과로부터 성장 시간에 따른 Al 도핑된 ZnO의 구조적 및 광학적 특성변화를 관찰했고, 이 연구 결과는 Al 도핑된 ZnO 나노구조 기반 전자소자 및 광소자에 응용 가능성을 보여주고 있다.

  • PDF

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • Yun, Gwan-Hyeok;Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF

Effect of Oxygen Pressure in the Synthesis of ZnO Nanowires through Melt Oxidation of Al-Zn Mixture (Al-Zn 혼합물을 용융 산화시켜 생성되는 ZnO 나노선의 성장에 미치는 산소압력의 영향)

  • Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.301-304
    • /
    • 2014
  • The effect of oxygen pressure on the synthesis of ZnO nanowires by means of melt-oxidation of an Al-Zn mixture was investigated. The samples were prepared in oxygen ambient for 1 h at $1,000^{\circ}C$ under oxygen pressure ranging from 0.5 to 100 Torr. ZnO nanowires were formed at oxygen pressures lower than 10 Torr. As the oxygen pressure increased from 0.5 to 10 Torr, the width of the nanowires increased, but their length decreased. The ZnO nanowires had a needle shape, which became gradually thinner toward the tip. X-ray diffraction patterns showed that the nanowires had a hexagonal wurtzite structure. However, ZnO nanowires were not observed when the oxygen pressure increased from 10 Torr to 100 Torr. In roomtemperature cathodeluminescence spectra of the ZnO nanowires, the intensity of ultra-violet emission at 380 nm increased with decreasing oxygen pressure, which indicated that the lower the oxygen pressure, the better the crystallinity of the ZnO nanowires.

Analysis on the V-I Curve of ZnO:As/ZnO:Al homo-junction LED (ZnO:As/ZnO:Al homo-junction LED의 V-I 특성 분석)

  • Oh, Sang-Hyun;Jeong, Yun-Hwan;Liu, Yan-Yan;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.410-411
    • /
    • 2007
  • To investigate the ZnO LED which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF magnetron sputtering system. The p-type ZnO thin film, fabricated by means of the ampoule-tube method, was used to make the ZnO p-n junction, and its characteristics was analyzed. The ampoule-tube method was used to make the p-type ZnO based on the As diffusion, and the hall measurement was used to confirm that the p-type is formed. the current-voltage characteristics of the ZnO p-n junction were measured to confirm the rectification characteristics of a typical p-n junction and the low leakage voltage characteristics. Analysis of ZnO LED V-I curve will provide a very useful technology for producing the UV ZnO LED and ZnO-based devices.

  • PDF

Growth of p-ZnO by RF-DC magnetron co-sputtering (RF-DC magnetron co-sputtering법에 의한 p-ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.277-280
    • /
    • 2004
  • p-ZnO films have been grown on (0001) sapphire substrates by RF-DC magnetron co-sputtering. The p-ZnO single crystalline thin films of the thickness about 120 nm were grown successfully. The dopant (Aluminum) was sputtered simultaneously from Al metal target by DC sputtering during rf-magnetron sputtering of ZnO at the substrate temperatures of $400^{\circ}C$ and $600^{\circ}C$ respectively. The crystallinity and optical properties of as-grown P-ZnO films have been characterized.

Microstructural, Electrical and Optical Features of ZnO Thin Films Prepared by RF Sputter Techniques

  • Cho, Nam-Hee;Park, Jung-Ho;Kim, Byung-Jin
    • The Korean Journal of Ceramics
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2001
  • Thin films of ZnO and Al doped ZnO were prepared by rf magnetron sputter techniques. When the oxygen fraction in Ar-O$_2$ sputter gas was about 2.0%, the films exhibited the composition of Zn:O=1.05:1. The films prepared at 250 W contain larger grains than the films grown at 100 W. However, high deposition rate seems to deteriorates the crystallinity as well as Al-substitution, resulting in lower concentration of mobile electrons. The Al-doped ZnO films which were deposited at $500^{\circ}C$ show resistance of 1$\times$10$^-2$ Wcm; optical band gap of the films ranges from 3.25 to 3.40 eV. These electrical and optical features are related with microstructural as well as crystalline characteristics of the films.

  • PDF

Electrical Properties of ITO and ZnO:Al Thin Films and Brightness Characteristics of PDP Cell with ITO and ZnO:Al Transparent Electrodes (ITO와 ZnO:Al 투명전도막의 전기적 특성 및 PDP 셀의 휘도 특성)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.6-13
    • /
    • 2006
  • Tin doped indium oxide(ITO) and Al doped zinc oxide(ZnO:Al) films, which are widely used as a transparent conductor in optoelectronic devices, were prepared by using the capacitively coupled DC magnetron sputtering method. ITO and ZnO:Al films with the optimum growth conditions showed each resistivity of $1.67{\times}10^{-3}[{\Omega}-cm],\;2.2{\times}10^{-3}[{\Omega}-cm]$ and transmittance of 89.61[%], 90.88[%] in the wavelength range of the visible spectrum. The two types of 5 inch-PDP cells with ZnO:Al and ITO transparent electrodes were made under the same manufacturing conditions. The PDP cell with ZnO:Al film was optimally operated in the mixing gas rate of Ne(base)-Xe(8[%]), and at gas pressure of 400[Torr]. It also shows the average measured brightness of $836[cd/m^2]$ at voltage range of $200{\sim}300$[V]. Luminous efficiency, one of the key parameter for high brightness and low power consumption, ranges from 1.2 to 1.6[lm/W] with increasing frequency of ac power supplier from 10 to 50[Khz]. The brightness and luminous efficiency are lower than those with ITO electrode by about 10[%]. However, these values are considered to be enough for the normal operation of PDP TV.