• Title/Summary/Keyword: ZnO/electrolyte interface

Search Result 6, Processing Time 0.022 seconds

Development of ZnS/SiO2 Double Overlayers for the Enhanced Photovoltaic Properties of Quantum Dot-Sensitized Solar Cells (양자점 감응 태양전지의 광전 특성 향상을 위한 ZnS/SiO2 이중 오버레이어 개발)

  • SONG, INCHEUL;JUNG, SUNG-MOK;SEO, JOO-WON;KIM, JAE-YUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.656-662
    • /
    • 2021
  • For the high efficiencies of quantum dot-sensitized solar cells (QDSCs), it is important to control the severe electron recombination at the interface of photoanode/electrolyte. In this work, we optimize the surface passivation process of ZnS/SiO2 double overlayers for the enhanced photovoltaic performances of QDSCs. The overlayers of zinc sulfide (ZnS) and SiO2 are coated on the surface of QD-sensitized photoanode by successive ionic layer adsorption and reaction (SILAR) method, and sol-gel reaction, respectively. In particular, for the sol-gel reaction of SiO2, the influences of temperature of precursor solution are investigated. By application of SiO2 overlayers on the ZnS-coated photoanode, the conversion efficiency of QDSCs is increased from 5.04% to 7.35%. The impedance analysis reveals that the electron recombination at the interface of photoanode/electrolyte is obviously reduced by the SiO2 overlayers.

TEM Study on the HgCdTe/Anodic oxide/ZnS Interfaces (투과전자현미경에 의한 HgCdTe/양극산화막/ZnS 계면 특성에 관한 연구)

  • 정진원;김재묵;왕진석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.121-127
    • /
    • 1995
  • We have analyzed the double insulating layer consisting of anodic oxide and ZnS through TEM experiments. The use of double insulating layer for HgCdTe surface passivation is one of the promising passivation method which has been recently studied deeply and the double insulating layer is formed by the evaporation of ZnS on the top of anodic oxide layer grown in H$_{2}$O$_{2}$ electrolyte. The structure of anodic oxide layer on HgCdTe is amorphous but the structure of oxide layer after the evaporation of ZnS has been changed to micro-crystalline. The interface layer of 150.angs. thickness has been found between ZnS and anodic oxide layer and is estimated to be ZnO layer. The results of analysis on the chemical components of ZnS, the interface layer and anodic oxide layer have showed that Zn has diffused into the anodic oxide layer deeply while Hg has been significantly decreased from HgCdTe bulk to the top of oxide layer. The formation of ZnO interface layer and the change of structure of anodic oxide layer after the evaporation of ZnS are estimated to be defects or to induce the defects which might possibly affect the increase of the positive fixed charges shown in C-V measurements of HgCdTe MIS.

  • PDF

A study on the characteristics of double insulating layer (HgCdTe MIS의 이중 절연막 특성에 관한 연구)

  • 정진원
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.463-469
    • /
    • 1996
  • The double insulating layer consisting of anodic oxide and ZnS was formed for HgCdTe metal insulator semiconductor(MIS) structure. ZnS was evaporated on the anodic oxide grown in H$_{2}$O$_{2}$ electrolyte. Recently, this insulating mechanism for HgCdTe MIS has been deeply studied for improving HgCdTe surface passivation. It was found through TEM observation that an interface layer is formed between ZnS and anodic oxide layers for the first time in the study of this area. EDS analysis of chemical compositions using by electron beam of 20.angs. in diameter and XPS depth composition profile indicated strongly that the new interface is composed of ZnO. Also TEM high resolution image showed that the structure of oxide layer has been changed from the amorphous state to the microsrystalline structure of 100.angs. in diameter after the evaporation of ZnS. The double insulating layer with the resistivity of 10$^{10}$ .ohm.cm was estimated to be proper insulating layer of HgCdTe MIS device. The optical reflectance of about 7% in the region of 5.mu.m showed anti-reflection effect of the insulating layer. The measured C-V curve showed the large shoft of flat band voltage due to the high density of fixed oxide charges about 1.2*10$^{12}$ /cm$^{2}$. The oxygen vacancies and possible cationic state of Zn in the anodic oxide layer are estimated to cause this high density of fixed oxide charges.

  • PDF

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

A Study on the Improvement of the Interface Contact and the Prevention of the Charge Recombination by the Surface Treatment of Transparent Conductive Oxide in Dye-sensitized Solar Cell (염료감응형 태양전지 투명전도성 막의 표면처리를 통한 계면 접촉 향상 및 재결합 방지 연구)

  • Seo, Hyun-Woong;Hong, Ji-Tae;Son, Min-Kyu;Kim, Jin-Kyoung;Shin, In-Young;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2214-2218
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) has been considered as a possible alternative to current silicon based p-n junction photovoltaic devices due to its advantages of high efficiency, simple fabrication process and low production cost. Numerous researches for high efficient DSC in the various fields are under way even now. Among them, the compact layer, which prevents the back electron transfer between transparent conductive oxides and the redox electrolyte, is fabricated by various methods such as a ZnO dip-coating, $TiCl_4$ dip-coating, and Ti sputtering. In this study, we tried to fabricate the $TiO_2$ compact layer by the spin-coating method using aqueous $TiCl_4$ solution. The effect of the spin-coating method was checked as compared with conventional dip-coating method. As a result, DSC with a spin-coated compact layer had 33.4% and 6% better efficiency than standard DSC and DSC with a dip-coated compact layer.