DOI QR코드

DOI QR Code

Development of ZnS/SiO2 Double Overlayers for the Enhanced Photovoltaic Properties of Quantum Dot-Sensitized Solar Cells

양자점 감응 태양전지의 광전 특성 향상을 위한 ZnS/SiO2 이중 오버레이어 개발

  • SONG, INCHEUL (Department of Chemical Engineering, Dankook University) ;
  • JUNG, SUNG-MOK (Department of Chemical Engineering, Dankook University) ;
  • SEO, JOO-WON (Department of Chemical Engineering, Dankook University) ;
  • KIM, JAE-YUP (Department of Chemical Engineering, Dankook University)
  • 송인철 (단국대학교 화학공학과) ;
  • 정성목 (단국대학교 화학공학과) ;
  • 서주원 (단국대학교 화학공학과) ;
  • 김재엽 (단국대학교 화학공학과)
  • Received : 2021.11.25
  • Accepted : 2021.12.16
  • Published : 2021.12.30

Abstract

For the high efficiencies of quantum dot-sensitized solar cells (QDSCs), it is important to control the severe electron recombination at the interface of photoanode/electrolyte. In this work, we optimize the surface passivation process of ZnS/SiO2 double overlayers for the enhanced photovoltaic performances of QDSCs. The overlayers of zinc sulfide (ZnS) and SiO2 are coated on the surface of QD-sensitized photoanode by successive ionic layer adsorption and reaction (SILAR) method, and sol-gel reaction, respectively. In particular, for the sol-gel reaction of SiO2, the influences of temperature of precursor solution are investigated. By application of SiO2 overlayers on the ZnS-coated photoanode, the conversion efficiency of QDSCs is increased from 5.04% to 7.35%. The impedance analysis reveals that the electron recombination at the interface of photoanode/electrolyte is obviously reduced by the SiO2 overlayers.

Keywords

References

  1. K. Takahashi and M. Konagai, "Amorphous silicon solar cells", Wiley, 1986, pp. 237. Retrieved from https://ui.adsabs.harvard.edu/abs/1986wi...bookR....T/abstract.
  2. P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells", Journal of Applied Physics, Vol. 93, No. 7, 2003, pp. 3693-3723, doi: https://doi.org/10.1063/1.1534621.
  3. K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee , K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, M. J. Ko, and M. J. Ko, "Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates", ACS NANO, Vol. 9, No. 4, 2015, pp. 3760-3771, doi: https://doi.org/10.1021/acsnano.5b01346.
  4. J. W. Jo, M. S. Seo, M. Park, J. Y. Kim, J. S. Park, I. K. Han, H. Ahn, J. W. Jung, B. Sohn, M. J. Ko, and H. J. Son, "Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material", Advanced Functional Materials, Vol. 26, No. 25, 2016, pp. 4464-4471, doi: https://doi.org/10.1002/adfm.201600746.
  5. J. S. Kang, M. A. Park, J. Y. Kim, S. H. Park, D. Y. Chung, S. H. Yu, J. Kim, J. Park, J. Choi, K. J. Lee, J. Jeong, M. J. Ko, K. Ahn, and Y. E. Sung, "Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye-and quantum dot-sensitized solar cells", Scientific Reports, Vol. 5, 2015, doi: https://doi.org/10.1038/srep10450.
  6. W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, and L. M. Peng, "CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes", Journal of the American Chemical Society, Vol. 130, No. 4, 2008, pp. 1124-1125, doi: https://doi.org/10.1021/ja0777741.
  7. Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto, and S. Kuwabata, "CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells", Chemistry Letters, Vol. 36, No. 1, 2007, pp. 88-89, doi: https://doi.org/10.1246/cl.2007.88.
  8. W. Lee, J. Lee, S. Lee, W. Yi, S. H. Han, and B. W. Cho, "Enhanced charge collection and reduced recombination of CdS/TiO2 quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes", Applied Physics Letters, Vol. 92, 2008, pp. 153510, doi: https://doi.org/10.1063/1.2911740.
  9. J. Tian and G. Cao, "Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells", The Journal of Physical Chemistry Letters, Vol. 6, No. 10, 2015, pp. 1859-1869, doi: https://doi.org/10.1021/acs.jpclett.5b00301.
  10. Z. Li, Y. F. Wang, X. W. Wang, Z. Yang, and J. H. Zeng, "Doping as an effective recombination suppressing strategy for performance enhanced quantum dots sensitized solar cells", Materials Letters, Vol. 221, 2018, pp. 42-45, doi: https://doi.org/10.1016/j.matlet.2018.03.058.
  11. Z. Li, L. Tu, H. Wang, H. Yang, and H. Ma, "TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection", Nanomaterials, Vol. 10, No. 4, 2020, pp. 631, doi: https://doi.org/10.3390/nano10040631.
  12. T. V. Nguyen, H. C. Lee, M. A. Khan, and O. B. Yang, "Electrodeposition of TiO2/SiO2 nanocomposite for dye-sensitized solar cell", Solar Energy, Vol. 81, No. 4, 2007, pp. 529-534, doi: https://doi.org/10.1016/j.solener.2006.07.008.
  13. Y. Wang, J. Zhai, Y. Song, J. Lin, P. Yin, and L. Guo, "Interfacial effect of novel core-triple shell structured Au@SiO2@Ag@ SiO2 with ultrathin SiO2 passivation layer between the metal interfaces on efficient dye-sensitized solar cells", Advanced Materials Interfaces, Vol. 2, No. 17, 2015, pp. 1500383, doi: https://doi.org/10.1002/admi.201500383.
  14. J. Du, Z. Du, J. S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, and L. J. Wan, "Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%", Journal of the American Chemical Society, Vol. 138, No. 12, 2016, pp. 4201-4209, doi: https://doi.org/10.1021/jacs.6b00615.
  15. H. Song, Y. Lin, M. Zhou, H. Rao, Z. Pan, and X. Zhong, "Zn-Cu-In-S-Se quinary "Green" alloyed quantum-dot-sensitized solar cells with a certified efficiency of 14.4%", Angewandte Chemie, Vol. 133, No. 11, 2020, pp. 6202-6209, doi: https://doi.org/10.1002/ange.202014723.
  16. L. Yue, H. Rao, J. Du, Z. Pan, J. Yu, and X. Zhong, "Comparative advantages of Zn-Cu-In-S alloy QDs in the construction of quantum dot-sensitized solar cells", RSC Advances, Vol. 8, 2018, pp. 3637-3645, doi: https://doi.org/10.1039/C7RA12321C.
  17. K. Mng, P. K. Surolia, O. Byrne, and K. R. Thampi, "Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode", Journal of Power Sources, Vol. 248, 2014, pp. 218-223, doi: https://doi.org/10.1016/j.jpowsour.2013.09.004.
  18. M. Zhou, G. Shen, Z. Pan, and X. Zhong, "Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells", Journal of Energy Chemistry, Vol. 38, 2018, doi: https://doi.org/10.1016/j.jechem.2018.12.010.
  19. J. Y. Kim, J. Yang, J. H. Yu, W. Beak, C. H. Lee, H. J. Son, T. Hyeon, and M. J. Ko, "Highly efficient copper-indium-selenide quantum dot solar cells: suppression of carrier recombinatio n by controlled ZnS overlayers", ACS Nano, Vol. 9, 2015, pp. 11286-11295, doi: https://doi.org/10.1021/acsnano.5b04917.
  20. T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, "Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells", Journal of the Electrochemical Society, Vol. 152, No. 2, 2005, pp. E68, doi: https://doi.org/10.1149/1.1849776.
  21. E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, "Spray coated multi-wall carbon nanotube counter electrode for tri-iodide(I3-) reduction in dye-sensitized solar cells", Electrochemistry Communications, Vol. 10, No. 7, 2008, pp. 1087-1089, doi: https://doi.org/10.1016/j.elecom.2008.05.013.
  22. A. Guerrero, S. Loser, G. Garcia-Belmonte, C. J. Bruns, J. Smith, H. Miyauchi, S. I. Stupp, J. Bisquert, and T. J. Marks, "Solution-processed small molecule: fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors", Physical Chemistry Chemical Physics, Vol. 39, No. 15, 2013, pp. 16456-16462, doi: https://doi.org/10.1039/C3CP52363B.