• Title/Summary/Keyword: ZnCdO

Search Result 402, Processing Time 0.023 seconds

A Study of Soil and Water Pollutions in Kyungsan Province (경산지역 토양 및 수질오염에 관한 연구)

  • 김용태;이부용;김동석;양소영;이동훈;박병윤
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.713-720
    • /
    • 2002
  • In order to provide the basic information on the environmental pollution of Kyungsan province, the contents of Pb, Cd, Cr, Cu, Mn and Zn in soil, stream water, aquatic sediment and groundwater were investigated, and also the values of pH, COD, $KMnO_4-C$,\;NH_3-N,\;NO_2-N,\;NO_3-N$ and $Cl^-$ of stream water and groundwater were determined. The results were as follows. The values of COD, $NH_3-N,\;NO_2-N$ and $NO_3-N$ of the stream waters were very low. The contents of Pb, Cd, Cr, Cu and Zn in the stream waters were respectively at range of $0.014~0.063 mg/{\ell},\;0.004~0.007 mg/{\ell$\mid$, 0~0.045 mg/{\ell},\;0~0.008 mg/{\ell}$\;and\;$0.001~0.175 mg/{\ell}$, and these values were much lower than those of contaminated stream water in Korea. The contents of Cd, Cr, Cu and Zn in the soils were respectively at range of 0.12~O.71 ppm, 0.88~2.65 ppm, 2.86~22.33 ppm and 3.89~26.39 ppm, and these values were much lower than those of ordinary polluted areas in Korea. The contents of Cd, Cr, Cu, As, Zn and Mn in the aquatic sediments were respectively at range of 3.05~3.81 ppm, 14.6~70.6 ppm, 13.74~61.59 ppm, 76.8~465.5 ppm, 12.56~190.83 ppm and 333.3~l188.3 ppm. The values of pH, $KMnO_4-C,\;NH_3-N$, and $NO_3-N$ of the groundwaters were respectively at range of 7.6~8.4, $0~3.95{\ell}$, 0.05~0.15 mg/{\ell}$ and 0.05~0.42 $mg/{\ell}$. The contents of Pb, Cd and Cr in the groundwaters were respectively at range of 0.015~0.061 $mg/{\ell}$, 0.O06~0.009 $mg/{\ell}$ and 0.005~0.045 $mg/{\ell}$.

Fabrication and Characterization of CdSe/ZnS-QDs Incorporated Microbeads for Ultra-sensitive Sensor Applications (양자점을 이용한 고감도 마이크로 비드의 제조 및 특성)

  • Lee, Dong-Sup;Lee, Jong-Chul;Lee, Jong-Heun;Koo, Eun-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.189-194
    • /
    • 2010
  • Compared with organic fluorophores, semiconductor quantum dots (QDs) have the better properties such as photostability, narrow emission spectra coupled to tunable photoluminescent emissions and exceptional resistance to both photo bleaching and chemical degradation. In this work, CdSe/ZnS QDs nanobeads were prepared by the incorporation of CdSe/ZnS QDs with mesoporous silica to use as the optical probe for detecting toxic and bio- materials with high sensitivity, CdSe/ZnS core/shell QDs were synthesized from the precursors such as CdO and zinc stearate with the lower toxicity than pyrotic precursors. The QD-nanobeads were characterized by transmission electron microscopy, FL microscopy, UV-Vis and PL spectroscopy, respectively.

Variation of Cadmium and Zinc Content in Paddy Soil and Rice from the Janghang Smelter Area (장항제련소 지역의 토양과 수도체중 Cd 및 Zn 함량의 변화)

  • Kim, Seong-Jo;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.131-141
    • /
    • 1994
  • To investigate differences in Cd and Zn contents in paddy soils and rice plants polluted by aerial emissions from the Janghang smelter, soil samples in the different directions and at the surface (0-15cm) and subsurface (15-30cm) in 1982 and 1990, and rice plants at the corresponding sampling sites in 1990 were collected from the Janghang Smelter Area. Soil samples were extracted with $4M-HNO_3$ and plant samples were digested with a mixture of $HNO_3$ and $HClO_4$for analyzing by atomic absorption spectrophotometry. The Cd and Zn contents in soils ranged from 0.09 to 4.42 and from 16.0 to 959.5mg $kg^{-1}$, respectively. The average contents of Cd and Zn in 1990 were higher than those in 1982. The Cd and Zn contents of soils near the center of the smelter were higher than those of soils farther from the center and also decreased in the order of east > north-north east > north east > north. The Cd and Zn levels in surface soils were higher than those in subsurface soils. The contaminated areas of Cd and Zn were within 4km in the east, and within 3km in the north-north east and the north east. Metal contents in brawn rice were the lowest in rice plants. The Cd content of brown rice was one sixth of that in leaf blade and in leaf sheath. The Cd content of leaf blade, stem and panicle axis were significantly correlated with the levels of Zn, Cu and Pb in soils, and Zn content of stem was significantly correlated with the levels of Cu and Pb. The Cd and Zn content in brown rice ranged from 0.05 to 0.25mg $kg^{-1}$ and from 10.5 to 30.9㎎ $kg^{-1}$ in the smelter area, respectively.

  • PDF

CdSe Quantum Dot based Transparent Light-emitting Device using Silver Nanowire/Ga-doped ZnO Composite Electrode (AgNWs/Ga-doped ZnO 복합전극 적용 CdSe양자점 기반 투명발광소자)

  • Park, Jehong;Kim, Hyojun;Kang, Hyeonwoo;Kim, Jongsu;Jeong, Yongseok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.6-10
    • /
    • 2020
  • The silver nanowires (AgNWs) were synthesized by the conventional polyol process, which revealed 25 ㎛ and 30 nm of average length and diameter, respectively. The synthesized AgNWs were applied to the CdSe/CdZnS quantum dot (QD) based transparent light-emitting device (LED). The device using a randomly networked AgNWs electrode had some problems such as the high threshold voltage (for operating the device) due to the random pores from the networked AgNWs. As a method of improvement, a composite electrode was formed by overlaying the ZnO:Ga on the AgNWs network. The device used the composite electrode revealed a low threshold voltage (4.4 Vth) and high current density compared to the AgNWs only electrode device. The brightness and current density of the device using composite electrode were 55.57 cd/㎡ and 41.54 mA/㎠ at the operating voltage of 12.8 V, respectively, while the brightness and current density of the device using (single) AgNWs only were 1.71 cd/㎡ and 2.05 mA/㎠ at the same operating voltage. The transmittance of the device revealed 65 % in a range of visible light. Besides the reliability of the devices was confirmed that the device using the composite electrode revealed 2 times longer lifetime than that of the AgNWs only electrode device.

PbS/CdS QDs as Co-sensitizers for QDSSC

  • Kim, U-Seok;Seol, Min-Su;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.371-371
    • /
    • 2011
  • 본 연구에서는 황화납(PbS)과 황화카드뮴(CdS)을 감응물질로 하는 양자점 감응형 태양전지를 만들고 효율을 측정하였다. Sputter를 이용하여 고진공의 상태에서 산화아연(ZnO) film을 seed layer로 증착한 후 수열합성법으로 ZnO 나노선을 합성한다. 합성된 나노선을 successive ionic layer adsorption and reaction (SILAR) 법으로 PbS, CdS 양자점을 합성하고 이를 주사전자 현미경(SEM), X-선 회절(XRD)을 통해 확인하였다. 또한 PbS와 CdS의 co-sensitizer를 합성하고 diffused reflectance spectra (DRS)를 측정함으로써 넓은 범위의 광흡수도를 확인할 수 있었다. Co-sensitizer의 합성 방법을 달리하여 PbS/CdS를 합성한 후 각각의 효율을 측정해보고, 더 높은 효율을 내기 위한 방안에 대해 고찰하였다.

  • PDF

The Study on Characteristics of Green Organic Light Emitting Device with Transparency Conductive Oxide Electrodes (투명전도성 산화물 전극에 따른 Green OLED의 특성연구)

  • Ki, Hyun-Chul;Kim, Seon-Hoon;Kim, Hwe-Jong;Kim, Sang-Gi;Choi, Young-Sung;Hong, Kyung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.615-618
    • /
    • 2009
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin film on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 800 [W]. Sheet resistance and surface roughness of ITO and ZnO thin film were measured by Hall-effect measurement system and AFM, respectively. The sheet resistance of ITO and ZnO thin film were 7.290 [$\Omega$] and 4.882 [$\Omega$], respectively. and surface roughness were 3.634 [nm] and 0.491 [nm], respectively. Green OLED was fabricated with the structure of TPD(400 [$\AA$])/Alq3(600 [$\AA$])/LiF(5 [$\AA$])/Al(1200 [$\AA$]). Turn-on voltage of green OLED applied ITO was 7 [V] and luminance was 7,371 [$cd/m^2$]. And, Turn-on voltage of green OLED applied ZnO was 14 [V] and luminance was 6,332 [$cd/m^2$].

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

Over-expression of Cu/ZnSOD Increases Cadmium Tolerance in Arabidopsis thaliana

  • Cho, Un-Haing
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.257-264
    • /
    • 2007
  • Over-expression of a copper/zinc superoxide dismutase (Cu/ZnSOD) resulted in substantially increased tolerance to cadmium exposure in Arabidopsis thaliana. Lower lipid peroxidation and $H_2O_2$ accumulation and the higher activities of $H_2O_2$ scavenging enzymes, including catalase (CAT) and ascorbate peroxidase (APX) in transformants (CuZnSOD-tr) compared to untransformed controls (wt) indicated that oxidative stress was the key factor in cadmium tolerance. Although progressive reductions in the dark-adapted photochemical efficiency (Fv/Fm) and quantum efficiency yield were observed with increasing cadmium levels, the chlorophyll fluorescence parameters were less marked in CuZnSOD-tr than in wi. These observations indicate that oxidative stress in the photosynthetic apparatus is a principal cause of Cd-induced phytotoxicity, and that Cu/ZnSOD plays a critical role in protection against Cd-induced oxidative stress.

Variation of Cadmium and Zinc Content in Rice and Soil of the Mangyeong River Area (만경강 유역의 토양과 수도체중 Cd 및 Zn 함량의 변화)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Kim, Un-Sung;Yoon, Ki-Woun;Moon, Kwang-Hyun;Kang, Gyeong-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.142-150
    • /
    • 1994
  • To investigate differences in Cd and Zn contents of paddy soils and rice plants polluted by the municipal and industrial waste water in the Mangyeong River Area, soil and plant samples were collected at several distances from the main inlet and at different depths of the soil. Soil samples were extracted with $4M-HNO_3$ and plant samples were digested with a mixture of $HNO_3$and $HClO_4$for analyzing heavy metals by atomic absorption spectrophotometry. The contents of Cd and Zn in soils ranged from 0.38 to 1.17 and from 33.8 to 464.6mg kg^{-1}, respectively. The average Cd level in 1990 was less than that in 1982, but the Zn level in 1990 was higher than that in 1982 in general. No variation in Cd contents was observed in soils at the different distances from the source of waste water, but Zn contents in soils were lower with the increasing distances from the source of waste water. A significant correlation was observed among Cd content, OM, available silicate, CEC and $Ca^{++}$. Similar results existed among Zn content of 1982, OM and $Ca^{++}$. The Cd content in subsurface soils of 1992 was significantly correlated with Zn, Cu, and Pb in soils, and the Zn content in soils was significantly correlated with the Cu and Pb in soils, regardless of years. The Cd content in leaf blades of rice was more than seven times higher than that in brown rice. The Zn content in rice was higher than that in leaf blades and in panicle axis. The Cd content in panicle axis and the Zn content in all parts of rice were correlated with Zn, Cu and Pb contents in soils. The Cd and Zn contents in brown rice ranged from 0.10 to 0.90mg $kg^{-1}$ and from 4.2 to 95.9mg $kg^{-1}$ in the Mangyeong River Area, respectively.

  • PDF

A novel approach in voltage transient technique for the measurement of electron mobility and mobility-lifetime product in CdZnTe detectors

  • Yucel, H.;Birgul, O.;Uyar, E.;Cubukcu, S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.731-737
    • /
    • 2019
  • In this study, a new measurement method based on voltage transients in CdZnTe detectors response to low energy photon irradiations is applied to measure the electron mobility (${\mu}_e$) and electron mobility-lifetime product $({\mu}{\tau})_e$ in a CdZnTe detector. In the proposed method, the pulse rise times are derived from low energy photon response to 59.5 keV($^{241}Am$), 88 keV($^{109}Cd$) and 122 keV($^{57}Co$) ${\gamma}-rays$ for the irradiation of the cathode surface at each detector for different bias voltages. The electron $({\mu}{\tau})_e$ product was then determined by measuring the variation in the photopeak amplitude as a function of bias voltage at a given photon energy using a pulse-height analyzer. The $({\mu}{\tau})_e$ values were found to be $(9.6{\pm}1.4){\times}10^{-3}cm^2V^{-1}$ for $1000mm^3$, $(8.4{\pm}1.6){\times}10^{-3}cm^2V^{-1}$ for $1687.5mm^3$ and $(7.6{\pm}1.1){\times}10^{-3}cm^2V^{-1}$ for $2250mm^3$ CdZnTe detectors. Those results were then compared with the literature $({\mu}{\tau})_e$ values for CdZnTe detectors. The present results indicate that, the electron mobility ${\mu}_e$ and electron $({\mu}{\tau})_e$ values in CdZnTe detectors can be measured easily by applying voltage transients response to low energy photons, utilizing a fast signal acquisition and data reduction and evaluation.