• Title/Summary/Keyword: Zn-complexes

Search Result 186, Processing Time 0.034 seconds

Examination of Various Metal Ion Sources for Reducing Nonspecific Zinc finger-Zn2+ Complex Formation in ESI Mass Spectrometry

  • Park, Soo-Jin;Park, Sun-Hee;Oh, Joo-Yeon;Han, Sang-Yun;Jo, Kyu-Bong;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.82-85
    • /
    • 2012
  • The formation of zinc finger peptide-$Zn^{2+}$ complexes in electrospray ionization mass spectrometry (ESI-MS) was examined using three different metal ion sources: $ZnCl_2$, $Zn(CH_3COO)_2$, and $Zn(OOC(CHOH)_2COO)$. For the four zinc finger peptides (Sp1-1, Sp1-3, CF2II-4, and CF2II-6) that bind only a single $Zn^{2+}$ in the native condition, electrospray of apo-zinc finger in solution containing $ZnCl_2$ or $Zn(CH_3COO)_2$ resulted in the formation of zinc finger-$Zn^{2+}$ complexes with multiple zinc ions. This result suggests the formation of nonspecific zinc finger-$Zn^{2+}$ complexes. Zn(tartrate), $Zn(OOC(CHOH)_2COO)$, mainly produced specific zinc finger-$Zn^{2+}$ complexes with a single zinc ion. This study clearly indicates that tartrate is an excellent counter ion in ESI-MS studies of zinc finger-$Zn^{2+}$ complexes, which prevents the formation of nonspecific zinc finger-$Zn^{2+}$ complexes.

Improvement of Efficiency Varying Ratio in Hybrid White OLED (도핑 비율에 따른 하이브리드 백색 OLED의 효율 향상에 관한 연구)

  • Kim, Nam-Kyu;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.571-575
    • /
    • 2014
  • We synthesized new materials of $Zn(HPB)_2$ and Ir-complexes as blue or red emitting material. We fabricated white Organic Light Emitting Diodes (OLED) by using $Zn(HPB)_2$ for the blue emitting layer, Ir-complexes for the red emitting layer and $Alq_3$ for the green emitting layer. We fabricated white OLED by using double emitting layers of $Zn(HPB)_2$:Ir-complexes and $Alq_3$. The doping rate of Ir-complexes was varied, such as 0.2%, 0.4%, 0.6%, and 0.8%, respectively. When the doping rate of $Zn(HPB)_2$:Ir-complexes was 0.6%, white emission was achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission was (0.322, 0.312).

Luminance Properties of Organic Light Emitting Diodes Using Zn-Complexes (Zn-Complexes를 이용한 OLEDs의 발광 특성 연구)

  • Jang, Yoon-Ki;Kim, Doo-Seok;Kim, Byoung-Sang;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1890-1892
    • /
    • 2005
  • Recently, high luminance and high efficiency were realized in OLEDs with multilayer structure including emitting materials such as metal-chelate complexes. New luminescent materials, [2- (2-hydroxyphenyl)-quinoline] (Zn(HPB)q), [(1,10-phenanthroline)- (8-hydroxyquinoline)] Zn(Phen)q was synthesized. Zn-Complexes have low molecular compound and thermal stability. The ionization potential(IP) and electron affinity(EA) of Zn-complexes were measured by cyclic-voltammetry(CV). The fundamental structure of the OLEDs was $ITO/{\alpha}$-NPD/Zn-Complex/Al and then we made device structure rightly in energy band gap. We using Zn(Phen)q as emitting layer and Zn(HPB)q as electron transport layer. We measured current density-voltage, luminance-voltage characteristics.

  • PDF

Complexes of Manganese, Cobalt and Zinc with Dibasic Organic Acids in Aqueous, Ethanol-Water and Acetone-Water Solutions (망간, 코발트 및 아연과 2 염기 유기산 사이의 착물)

  • Sang Up Choi;Dong Jae Lee
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 1974
  • Solutions of $Mn^{++}, Co^{++} and Zn^{++}$ were mixed with various dibasic organic acids in the presence of cation exchange resin at room temperature. The distribution ratios of the metal ions between resin and solution were measured, using radioactive metal ions as tracer. From the observed variation of the distribution ratios with acid anion concentrations, it was concluded that $Mn^{++}, Co^{++}$ and $Zn^{++}$ formed one-to-one complexes with succinate, malonate, o-phthalate and tartrate ions in aqueous, 20 % ethanol-water and 20 % acetone-water solutions. The results of the present investigation indicated that the relative stabilities of the complexes increased in the order: $Mn^{++} < Co^{++} < Zn^{++} complexes, Succinate < malonate < o-phthalate < tartrate complexes, Aqueous < mixed solvent systems.$

  • PDF

Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation

  • Song, Yujin;Kim, Dongil;Lee, Ha-Jin;Lee, Hyosun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2929-2934
    • /
    • 2014
  • The reaction between $[CdBr_2{\cdot}4H_2O]$ and anhydrous $[ZnCl_2]$ with N,N'-bidentate N-(pyridin-2-ylmethylene)-cyclopentanamine (impy) in ethanol yields dimeric $[(impy)Cd({\mu}-Br)Br]_2$ and monomeric $[(impy)ZnCl_2]$ complexes, respectively. The X-ray crystal structure of Cd(II) and Zn(II) complexes revealed that the cadmium atom in $[(impy)Cd({\mu}-Br)Br]_2$ and zinc in $[(impy)ZnCl_2]$ formed a distorted trigonal-bipyramidal and tetrahedral geometry, respectively. Both complexes showed moderate catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO), with polymethylmethacrylate (PMMA) syndiotacticity of about 0.70.

Spectroscopic, Thermal and Biological Studies of Zn(II), Cd(II) and Hg(II) Complexes Derived from 3-Aminopyridine and Nitrite Ion

  • Dhaveethu, Karuthakannan;Ramachandramoorthy, Thiagarajan;Thirunavukkarasu, Kandasamy
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.712-720
    • /
    • 2013
  • Microwave assisted syntheses of Zn(II), Cd(II) and Hg(II) complexes with 3-aminopyridine (3AP) and nitrite ($NO_2{^-}$) ions have been reported. The metal complexes were characterized by elemental analyses, molar conductance, IR, Far-IR, electronic, NMR ($^1H$, $^{13}C$), thermal and electron impact mass spectral studies. The spectroscopic studies reveal the composition, the nature of nitrite ligand in the complexes, electronic transitions, chemical environments of C and H atoms thermal degradation of the complexes. On the basis of characterization data, distorted tetrahedral geometry is suggested for Zn(II), Cd(II) and Hg(II) complexes. The organic ligand (3AP) and their metal complexes were screened against gram negative pathogenic bacteria and fungi in vitro. The results are compared with our previous report J. Korean Chem. Soc. 2013, 57, 341 on 4-aminopyridine and nitrite ion complexes of the same metal ions.

Fabrication of White OLED Using Zn(HPB)2 and Zn(HPQ)2 as a emitting layer (Zn(HPB)2와 Zn(HPQ)2를 이용한 White OLED의 제작 및 전기적 특성)

  • Kim, Dong-Eun;Kim, Byoung-Sang;Kim, Gyong-Chol;Shin, Hoon-Kyu;Kwon, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2240-2244
    • /
    • 2010
  • We have studied white OLED using two types of Zn-complexes as a emitting layer. We synthesized new emissive materials $Zn(HPQ)_2$ as a yellow emitting material and $Zn(HPB)_2$ as a blue emitting material. Zn-complexes have a low molecular compound and thermal stability. The fundamental structures of the fabricated OLED was ITO / NPB (40nm) / $Zn(HPB)_2$ (30nm) / $Zn(HPQ)_2$ / LiF / Al. We varied the thickness of the $Zn(HPQ)_2$ layer 20, 30 40 nm. When the thickness of the $Zn(HPQ)_2$ layer was 20 nm, white emission was achieved. The maximum luminance was 12,000 cd/$m^2$ at a current density of 800 mA/$cm^2$. The CIE coordinates of the white emission was (0.319. 0.338) at an applied voltage of 10 V.

Synthesis and Crystal Structures of Zn(II)- and Mn(II)- Diphenyldicarboxylate Complexes with N-Donor Ligand

  • Koo, Bon Kweon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.321-326
    • /
    • 2016
  • Two new polymeric complexes, [Zn(dpa)(pyz)0.5]n (1; dpa = diphenate and pyz = pyrazine) and [Mn3(bpdc)3(py)4]n (2; bpdc = biphenyl-4,4'-dicarboxylate and py = pyridine) were successfully isolated by the hydro- and solvo-thermal technique, respectively. The complexes were characterized by elemental and thermal analysis, vibrational IR spectroscopy, and by single crystal x-ray structure determination. For 2, magnetic property was also investigated. Complex 1 is a two-dimensional layer structure consisting of a paddle-wheel building unit of Zn-dpa chains bridged by pyrazine. While, complex 2 consists of linear trimeric Mn3 cluster as building unit to form 3D network. In the complexes, dpa2− (1) and bpdc2−(2) ligands show a typical bis-monodendate bridging and two kinds of bridging modes; a typical bridging and chelating/bridging mode, respectively.

Calculation of the Dipole Moments for Tetrahedral and Square Planar $[M(II)N_2S_2]$ Type Complexes [M(Ⅱ) = Ni(Ⅱ), Co(Ⅱ), Cu(Ⅱ) or Zn(Ⅱ)] (사면체 및 사각형 $[M(II)N_2S_2]$ 형태 착물의 쌍극자 모멘트의 계산 [M(II) = Ni(II), Co(II), Cu(II) 또는 Zn(II)])

  • Ahn Sangwoon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 1979
  • The dipole moments for square planar and tetrahedral $[M(II)N_2S_2]$ type complexes are calculated, using the expansion method for spherical harmonics [M(II) = Co(II), Ni(II), Cu(II) or Zn(II)]. The calculated values of the dipole moments for these complexes are in the range of the experimental values. The possible structures for these complexes in benzene solution are discussed on the basis of the calculated dipole moments and the the magnetic properties.

  • PDF

Tandem Mass Spectrometric Evidence for the Involvement of a Lysine Basic Side Chain in the Coordination of Zn(II) Ion within a Zinc-bound Lysine Ternary Complex

  • Yu, Sung-Hyun;Lee, Sun-Young;Chung, Gyu-Sung;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1477-1483
    • /
    • 2004
  • We present the tandem mass spectrometry applications carried out to elucidate the coordination structure of Zn(II) bound lysine ternary complexes, $(Zn+Lys+Lys-H)^+$, which is a good model system to represent a simple (metallo)enzyme-substrate complex (ES). In particular, experimental efforts were focused on revealing the involvement of a lysine side chain ${\varepsilon}$-amino group in the coordination of $Zn^{2+}$ divalent ions. MS/MS fragmentation pattern showed that all the oxygen species within a complex fell off in the form of $H_2O$ in contrast to those of other ternary complexes containing amino acids with simple side chains (4-coordinate geometries, Figure 1a), suggesting that the lysine complexes have different coordination structures from the others. The participation of a lysine basic side chain in the coordination of Zn(II) was experimentally evidenced in MS/MS for $N{\varepsilon}$-Acetyl-L-Lys Zn(II) complexes with acetyl protection groups as well as in MS/MS for the ternary complexes with one $NH_3$ loss, $(Zn+Lys+Lys-NH_3-H)^+$. Detailed structures were predicted using ab initio calculations on $(Zn+Lys+Lys-H)^+$ isomers with 4-, 5-, and 6-coordinate structures. A zwitterionic 4-coordinate complex (Figure 7d) and a 5-coordinate structure with distorted bipyramidal geometry (Figure 7b) are found to be most plausible in terms of energy stability and compatibility with the experimental observations, respectively.