Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.10.1477

Tandem Mass Spectrometric Evidence for the Involvement of a Lysine Basic Side Chain in the Coordination of Zn(II) Ion within a Zinc-bound Lysine Ternary Complex  

Yu, Sung-Hyun (Department of Chemistry, Sogang University)
Lee, Sun-Young (Department of Chemistry, Sogang University)
Chung, Gyu-Sung (Department of Chemistry, Konyang University)
Oh, Han-Bin (Department of Chemistry, Sogang University)
Publication Information
Abstract
We present the tandem mass spectrometry applications carried out to elucidate the coordination structure of Zn(II) bound lysine ternary complexes, $(Zn+Lys+Lys-H)^+$, which is a good model system to represent a simple (metallo)enzyme-substrate complex (ES). In particular, experimental efforts were focused on revealing the involvement of a lysine side chain ${\varepsilon}$-amino group in the coordination of $Zn^{2+}$ divalent ions. MS/MS fragmentation pattern showed that all the oxygen species within a complex fell off in the form of $H_2O$ in contrast to those of other ternary complexes containing amino acids with simple side chains (4-coordinate geometries, Figure 1a), suggesting that the lysine complexes have different coordination structures from the others. The participation of a lysine basic side chain in the coordination of Zn(II) was experimentally evidenced in MS/MS for $N{\varepsilon}$-Acetyl-L-Lys Zn(II) complexes with acetyl protection groups as well as in MS/MS for the ternary complexes with one $NH_3$ loss, $(Zn+Lys+Lys-NH_3-H)^+$. Detailed structures were predicted using ab initio calculations on $(Zn+Lys+Lys-H)^+$ isomers with 4-, 5-, and 6-coordinate structures. A zwitterionic 4-coordinate complex (Figure 7d) and a 5-coordinate structure with distorted bipyramidal geometry (Figure 7b) are found to be most plausible in terms of energy stability and compatibility with the experimental observations, respectively.
Keywords
Tandem mass spectrometry; Zinc ion; Lysine amino acid; Metal ion coordination; Binding structures;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Sigel, H. In Advances in Solution Chemistry; Bertini, I.; Lunazzi,L.; Dei, A., Eds.; Plenum: New York, 1981; pp 149-159.
2 Yoon, K. H.; Kim, W.; Park, J. S.; Kim, H. J. Bull. Korean Chem.Soc. 2004, 25, 878.   DOI   ScienceOn
3 Yamauchi, O.; Odani, A. J. Am. Chem. Soc. 1985, 107, 5938.   DOI
4 Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Int. J. MassSpectrom. 2001, 206, 45.   DOI   ScienceOn
5 Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Anal. Chim.Acta 1991, 246, 211.   DOI   ScienceOn
6 Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;Gordon, M. S.; Jensen, J. H.; Koseki, K.; Matsunaga, N.; Nguyen,K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J.Comput. Chem. 1993, 14, 1347.   DOI   ScienceOn
7 Ge, Y.; Horn, D. M.; McLafferty, F. W. Int. J. Mass Spectrom. 2001, 210/211, 203.   DOI   ScienceOn
8 Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81,6026.   DOI
9 Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Int. J. MassSpectrom. 2003, 227, 439.   DOI   ScienceOn
10 Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S. BioinorganicChemistry; University Science Books: New York, 1994.
11 Lemoff, A. S.; Bush, M. F.; Williams, E. R. J. Am. Chem. Soc.2003, 125, 13576   DOI   ScienceOn
12 Hu, P.; Sorensen, C.; Gross, M. L. J. Am. Soc. Mass Spectrom.1995, 6, 1079   DOI   ScienceOn
13 Lippard, S. J.; Berg, J. M. Principles of Bioorganic Chemistry;University Science Books: New York, 1994.
14 Reiter, A.; Adams, J.; Zhao, H. J. Am. Chem. Soc. 1994, 116,7827.   DOI   ScienceOn
15 Oh, H.-B.; Breuker, K.; Sze, S. K.; Ying, G.; Carpenter, B.K.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 2002, 99, 15863.   DOI   ScienceOn
16 Berg, J. M.; Shi, Y. Science 2003, 300, 1081.   DOI   ScienceOn
17 Mildvan, A. S. In The Enzymes, 3rd ed.; Boer, P. D., Ed.; AcademicPress: New York, 1970; Vol. II, p 445.
18 Sigel, H.; Martin, B. R. Chem. Rev. 1982, 82, 385   DOI
19 Lin, Y.-L.; Lim, C. J. Am. Chem. Soc. 2004, 126, 2602.   DOI   ScienceOn
20 Marshall, A. G.; Wang, T. C. L.; Ricca, T. L. J. Am. Chem. Soc.1985, 107, 7893.   DOI
21 Yamauchi, O.; Odani, A. J. Am. Chem. Soc. 1981, 103, 391.   DOI
22 Fischer, B. E.; Sigel, H. J. Am. Chem. Soc. 1980, 102, 2998.   DOI
23 Christianson, D. W. Adv. Protein Chem. 1991, 42, 281.   DOI
24 Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry :Principles of Structure and Reactivity, 4th ed.; Addison WesleyPub. Co.: Harlow, 1997.
25 Ashagiri, D.; Pratt, L. R.; Paulaitis, M. E.; Rempe, S. B. J. Am.Chem. Soc. 2004, 126, 1285.   DOI   ScienceOn
26 Malini-Balakrishnan, R.; Scheller, K. H.; Haring, U. K.; Tribolet,R.; Sigel, H. Inorg. Chem. 1985, 24, 2067.   DOI
27 Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Int. J. MassSpectrom. 2001, 204, 267.   DOI   ScienceOn
28 Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem.1976, S10, 1.
29 Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. J. Am.Chem. Soc. 1996, 118, 8365.   DOI   ScienceOn
30 Berg, J. M.; Godwin, H. A. Annu. Rev. Biophys. Biomol. Struct.1997, 26, 357.   DOI   ScienceOn
31 Stevens, W. J.; Basch, H.; Jasien, P. Can. J. Chem. 1992, 70,612.   DOI
32 Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Int. J. MassSpectrom. 2000, 201, 307.   DOI   ScienceOn