• 제목/요약/키워드: Zn-coated

검색결과 365건 처리시간 0.033초

기판에 의한 응력과 입계크기가 이산화바나듐 박막 형성에 미치는 영향 연구 (Effect of Substrate-Induced Stress and Grain Size on the formation of VO2 thin films)

  • 구현;배성환;신동민;권오정;박찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1279_1280
    • /
    • 2009
  • Vanadium dioxide(VO2) has been reported to be the most attractive material for thermochromic windows due to its semiconductor-metal phase transition at around $68^{\circ}C$. However, our previous experiment showed it is difficult to grow VO2 thin films directly on glass substrate, whereas thermochromic VO2 thin films were successfully grown on R-cut sapphire substrate. Properties of VO2 thin films on different orientations of sapphire substrates were already reported. Furthermore, VO2 thin films were successfully grown heteroepitaxially on (001) preferred oriented ZnO coated glass. We deposited VO2 thin films using V2O5 targets on substrates with various lattice parameters with same orientation(SrTiO3, MgO, and Sapphire substrate of (001) orientation) by pulsed laser deposition. In this work, we will discuss the effects of lattice misfit, substrate-induced stress and grain size on the properties of VO2 thin films deposited on various substrate materials.

  • PDF

타닌산-아연 복합체를 이용한 단일수준에서의 동물세포 코팅 (Cytocompatible Coating of Individual Mammalian Cells with Tannic Acid-Zn Complex)

  • 이준오
    • KSBB Journal
    • /
    • 제32권2호
    • /
    • pp.160-167
    • /
    • 2017
  • Coating of individual cells with organic or inorganic materials has drawn a great deal of attention, because it provides the cells with physicochemical durability, which would contribute to the development of bioreactors, biosensor, and lab-on-a-chip, as well as to the fundamental studies in single cell-based biology. Although many strategies have been developed for coating of microbial cells, limited methods are available to coat mammalian cells because most mammalian cells do not have a robust membrane or exoskeleton. Instead, they are enclosed in a lipid bilayer, which is fluidic and vulnerable to changes in its environments. It is more difficult to treat mammalian cells in vitro than microbial cells because the surfaces of mammalian cells are not protected or reinforced by a tough coat. In this work, we report a cytocompatible and degradable nanocoat for mammalian cells. Three types of mammalian cells (HeLa cells, NIH 3T3 fibroblasts, and Jurkat T cells) were individually coated within metal-polyphenol. To maintain the viability of the mammalian cells, we performed the whole processes under strictly physiological culture conditions, and carefully selected nontoxic materials.

$CuPc/C_{60}$을 이용한 유기 광기전 소자에서 엑시톤 억제층과 전극 변화에 따른 광기전 특성 연구 (Photovoltaic Effects of Exciton Blocking Layer and Electrodes in Organic Semiconductor $CuPc/C_{60}$)

  • 허성우;오현석;이원재;이준웅;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.112-115
    • /
    • 2004
  • Photovoltaic effects in $CuPc/C_{60}$ heterojunction structure have been studied depending on thickness of exciton blocking layer(BCP) and electrodes. Bare ITO and polymer coated electrode(PEDOT:PSS) were used as an anode, and Al, Ca/Al, Mg/Al, LiF/Al, and LiAl were used as a cathode. Photovoltaic parameters depending on BCP layer thickness from 0 to 60 nm and electrodes having different work function were measured using Keithley 236 source-measure unit and a 500W xenon lamp (ORIEL 66021). We have seen that the BCP layer thickness severely affects on the performance of photovoltaic cells.

  • PDF

탄소 나노튜브 혼합액으로 봉공처리된 텅스텐 카바이드 용사층의 아연 내부식성에 대한 연구 (A study on Zn corrosion resistance of WC spray coating sealed with carbon nanotube suspensions)

  • 김봉훈;이보영
    • Journal of Welding and Joining
    • /
    • 제33권1호
    • /
    • pp.49-53
    • /
    • 2015
  • An experimental study was conducted to investigate the effect of carbon nanotubes on the zinc corrosion resistance of sealing layer formed on the Tungsten Carbide spray coating. Using the nanotubes, a sealing agent in the form of solid-liquid suspensions was made and applied to the surface of spray coating. A series of experiments, consisted of three stages such as preparation of test piece, molten-pot immersion test, and evaluation of micro structure, were undertaken to demonstrate complicated interaction existing between zinc ions and sealing layer containing the nanotubes. Experimental results showed newly developed sealing layer were less susceptible to corrosion and thus coated layer was well protected even in the case of 10 days exposure. Comparison of the micro structure after molten pot test also indicated that carbon nanotubes still remained in the matrix and organized more reliable frame work constituted with boron nitride and chromium compound. It was revealed that carbon nanotubes in the sealing layer played positive role to enhance zinc corrosion resistance in the perspective of both fibrous structure and inherent chemical stability.

GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성 (Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells)

  • 박재호;이경주;송상우;조슬기;문병무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

CuInS2 나노 반도체 합성 및 표면 개질을 통한 광학적 효율 분석 연구 (Synthesis and Characterization of CuInS2 Semiconductor Nanoparticles and Evolution of Optical Properties via Surface Modification)

  • 양희승;김유진
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.177-181
    • /
    • 2012
  • Copper composite materials have attracted wide attention for energy applications. Especially $CuInS_2$ has a desirable direct band gap of 1.5 eV, which is well matched with the solar spectrum. $CuInS_2$ nanoparticles could make it possible to develop color-tunable $CuInS_2$ nanoparticle emitter in the near-infrared region (NIR) for energy application and bio imaging sensors. In this paper, $CuInS_2$ nanoparticles were successfully synthesized by thermo-decomposition methods. Surface modification of $CuInS_2$ nanoparticles were carried out with various semiconductor materials (CdS, ZnS) for enhanced optical properties. Surface modification and silica coating of hydrophobic nanoparticles could be dispersed in polar solvent for potential applications. Their optical properties were characterized by UV-vis spectroscopy and photoluminescence spectroscopy (PL). The structures of silica coated $CuInS_2$ were observed by transmission electron microscopy (TEM).

대형 고속 선박용 러더의 내침식, 부식 특성 향상을 위한 용사 코팅막 (Thermal Spray Coating Layer for Improvement of Erosion and Corrosion Resistance Applicable to Large Sized High Speed Ship's Rudder)

  • 이유송;허성현;김진홍;김여중;배일용;이명훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.196-197
    • /
    • 2011
  • Rudder, one of the most important component in the marine vessel, is now being decreased life time to serve due to cavitation erosion, vortex current, high flow speed suffer from ship speed going up dramatically. In this study, 10 kinds of thermal spray coating materials(2 of Zn alloy series, 3 of Al alloy series, 3 of Cu alloy series, 2 of STS alloy series) are chosen to apply on specimens and analyze micro structure, metallic composition, properties(porosity, oxidation) by using visual observation, XRD, EDX etc.. Additionally, to refine the characteristic of corrosion endurance for thermal spray coating layer, compared with thermal spray process and 5 kinds of heavy duty painting and AC paint (Anti-Corrosion Paint). Based on above mentioned experimental results, a priority of all coated specimens on corrosion-erosion endurances finalized and summarized there by desirable composition and process of thermal sprayed material properly.

  • PDF

나노물질이 코팅된 직물의 기능성 향상에 관한 연구 (Study on Characteristics of coated fabric using nano-particle)

  • 김종원;윤석한;염정현;배은아
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2011년도 제45차 학술발표회
    • /
    • pp.55-55
    • /
    • 2011
  • 국내의 등산용 아웃도어 제품의 경우, 기능성인 투습도와 내수압만을 증대시키려는 연구가 주류를 이루고 있었다. 하지만, 실제 등산용 아웃도어의 경우 산악지형인 고지대에서 사용시간이 많으므로, 이에 따른 장시간의 직접적인 태양광 노출로 인한 인체에 치명적인 영향을 야기시키고 있지만, 인체 보호용 헬스케어 아웃도어 제품에 대한 연구는 미흡한 실정이다. 태양광은 자외선 2.5%, 가시광선 51.5%, 적외선 46.0%의 광량 비율을 가지고 있으며, 이 중 자외선은 광량은 적지만 에너지적으로 높아 유기물 분해 및 열화를 일으킨다. 이러한 자외선을 차단하기위해 아웃도어 의류에서는 유무기하이브리드 소재를 표면에 코팅시키게 되며, 기능성 코팅액내에 함유되어 있는 나노분말의 경우 이산화티타늄($TiO_2$), 산화세륨(CeO), 산화아연(ZnO), 삼산화텅스텐($WO_3$), 산화마그네슘(MgO) 등이 주로 사용되어 진다. 본 연구에서는 자외선 흡수소재로 나노산화아연분말을 이용하여, 그 입도 및 코팅용 희석 용매내의 분산성을 확인하고, 함유량을 달리한 코팅 수지를 제조하여, 코팅시편 제조 후 그 특성을 비교/분석하여 자외선 차단 효과를 확인하고자 한다.

  • PDF

크롬 프리 세륨 용액에 의한 AZ31 마그네슘 합금의 화성 피막에 대한 특성 평가 (Characteristics of Conversion Coating of AZ31 Magnesium Alloy Formed in Chromium-Free Cerium-Based Solution)

  • 김명환;이동욱;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.62-68
    • /
    • 2016
  • A chromium-free Ce-based conversion coating formed by immersion in a solution containing cerium chloride and nitric acid on AZ31 magnesium alloy has been studied. The effects of acid pickling on the morphology and the corrosion resistance of the cerium conversion coating were investigated. The corrosion resistance of the conversion coating prepared on AZ31 Mg alloy after organic acid pickling was better than that of inorganic acid pickling. The morphology of the conversion-coated layer was observed using optical microscope and SEM. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.0 to $1.1{\mu}m$. The main elements of the conversion coating of AZ31 Mg alloy are Mg, O, Al, Ce and Zn by EDS analysis. The electrochemical polarization results showed that the Ce-based conversion coating could reduce the corrosion activity of the AZ31 Mg alloy substrates in the presence of chloride ions.

Hydrogen Production by the Photocatalystic Effects in the Microwave Water Plasma

  • Jang, Soo-Ouk;Kim, Dae-Woon;Koo, Min;Yoo, Hyun-Jong;Lee, Bong-Ju;Kwon, Seung-Ku;Jung, Yong-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.284-284
    • /
    • 2010
  • Currently, hydrogen has been produced by Steam Reforming or partial oxidation reforming processes mainly from oil, coal, and natural gas and results in the production of $CO_2$. However, these are influenced greatly on the green house effect of the earth. so it is important to find the new way to produce hydrogen utilizing water without producing any environmentally harmful by-products. In our research, we use microwave water plasma and photocatalyst to improve dissociation rate of water. At low pressure plasma, electron have high energy but density is low, so temperature of reactor is low. This may cause of recombination in the generated hydrogen and oxygen from splitting water. If it want to high dissociation rate of water, it is necessary to control of recombination of the hydrogen and oxygen using photocatalyst. We utilize the photocatalytic material($TiO_2$, ZnO) coated plasma reactor to use UV in the plasma. The quantity of hydrogen generated was measured by a Residual Gas Analyzer.

  • PDF