• Title/Summary/Keyword: Zn-based oxide

Search Result 258, Processing Time 0.029 seconds

Microstructure Properties of Zinc Oxide Varistor with $Sb_2O_3$ Contents for Low Voltage Application ($Sb_2O_3$함량 변화에 따른 저전압용 ZnO Varistor의 미세구조 특성)

  • 박종주;서정선
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.149-153
    • /
    • 1997
  • ZnO varistor based on ZnO-Bi2O3-Co3O4-MnCO3-Cr2-O3-Sb2O3 system with Sb2O3 contents were studied for grain size variation and microstructure properties. The composition of pure ZnO varistor was observed composition was inhibited owing to formation of Zn7Sb2O12 spinel phase and did not observed abnrmal grain growth. With Sb2O3 contents, the grain sizes of ZnO varistor were remarkably decreased and the microstructure had the distribution of dense and homogeneous grains.

  • PDF

Oxide TFT as an Emerging Technology for Next Generation Display

  • Kim, Hye-Dong;Jeong, Jae-Kyeong;Mo, Yeon-Gon;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.119-122
    • /
    • 2008
  • In this paper, we describe the current status and issues of the oxide thin-film transistors (OTFTs), which attract much attention as an emerging new backplane technology replacing conventional silicon-based TFTs technologies. First, the unique benefits of OTFTs will be presented as a backplane for large-sized AMOLED including note-book PC, second TV and HD-TV. And then, the state-of-the-art transistor performance and uniformity characteristics of OTFTs will be highlighted. The obtained a-IGZO TFTs exhibited the field-effect mobility of $18\;cm^2/Vs$, threshold voltage of 1.8 V, on/off ratio of $10^9$, and subthreshold gate swing of 0.28 V/decade. In addition, the world largest-sized 12.1-inch WXGA active-matrix organic light emitting diode (AMOLED) display is demonstrated using indium-gallium-zinc oxide (IGZO) TFTs.

  • PDF

Growth and Properties of p-type Transparent Oxide Semiconductors

  • Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.99-99
    • /
    • 2014
  • Transparent oxide semiconductors (TOSs) are. currently attracting attention for application to transparent electrodes in optoelectronic devices and active channel layers in thin-film transistors. One of the key issues for the realization of next generation transparent electronic devices such as transparent complementary metal-oxide-semiconductor thin-film transistors (CMOS TFTs), transparent wall light, sensors, and transparent solar cell is to develop p-type TOSs. In this talks, I will introduce issues and status related to p-type TOSs such as LnCuOQ (Ln=lanthanide, Q=S, Se), $SrCu_2O_2$, $CuMO_2$ (M=Al, Ga, Cr, In), ZnO, $Cu_2O$ and SnO. The growth and properties of SnO and Cu-based oxides and their application to electronic devices will be discussed.

  • PDF

A Study on the Stability of Praseodymium-Based Zinc Oxide Varistor with Tittria Additives. (이트리아가 첨가된 프라세오디뮴계 산화아연 바리스터의 안정성에 관한 연구)

  • 남춘우;박춘현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.842-848
    • /
    • 1998
  • The stability of paraseodymium-based zinc oxide varistor consisting of Zn-Pr-Co-Cr-Y oxide was investigated according to yttria additives under different stress conditons, such as 0.8V\ulcorner\ulcorner/373K/12h and 0.85V\ulcorner\ulcorner/393K/12h. Wholly, all varistor after the stress showed nearly symmetric and stable I-V characteristics. Particularly, in the case of 2.0mol% and 4.0mol% yttria-added varistor showing a good I-V characteristics, the varation rate of varistor voltage were less 1% and that of nonlinear coefficient were about degree of 5%, and what is remarkable, leakage current with increasing stress time during the applied stress was almost constant. It the light of these facts, it is estimated that varistor constituents having 2.0mol% and 4.0mol% yittria, respectively, will be utilized to various application fields.

  • PDF

$NO_{2}$ Sensing Properties of Oxide Semiconductor Thick Films (산화물 반도체형 후막 가스 센서의 이산화질소 감지 특성)

  • Kim, Seung-Ryeol;Yun, Dong Hyun;Hong, Hyung-Ki;Kwon, Chul-Han;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.451-457
    • /
    • 1997
  • The thick films of oxide semiconductors such as $WO_{3}$, $SnO_{2}$ and ZnO for the $NO_{2}$ detection of sub-ppm range have been prepared and their characteristics were investigated. It is showed that the optimum operating temperatures of the sensors are $300^{\circ}C$ and $220{\sim}260^{\circ}C$ for $WO_{3}$-based and $SnO_{2}$-based thick films, and ZnO-based thick films, respectively. Since the resistance of ZnO-based thick films are extremely high($>10^{6}{\Omega}$), the signal to noise ratio was comparatively low. In order to determine the selectivity, the films are exposed to the interfering gases such as ozone, ammonia, methane and the mixture of carbon monoxide and propane. $WO_{3}$-ZnO(3 wt.%) and $SnO_{2}-WO_{3}$(3 wt.%) thick film sensors show high sensitivity, good selectivity, excellent reproducibility and the linearity of $NO_{2}$ concentration versus sensor resistance. The preliminary results clearly demonstrated that the sensor can be successfully applied for the detection of $NO_{2}$ in sub-ppm range.

  • PDF

Power Enhancement of ZnO-Based Piezoelectric Nanogenerators Via Native Defects Control

  • Kim, Dohwan;Kim, Sang-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.297.2-297.2
    • /
    • 2013
  • Scavenging electricity from wasteful energy resources is currently an important issue and piezoelectric nanogenerators (NGs) based on zinc oxide (ZnO) are promising energy harvesters that can be adapted to various portable, wearable, self-powered electronic devices. Although ZnO has several advantages for NGs, the piezoelectric semiconductor material ZnO generate an intrinsic piezoelectric potential of a few volts as a result of its mechanical deformation. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. Oxygen vacancies (Vo) that work as donors exist in ZnO thin film and usually screen some parts of the piezoelectric potential. Consequently, the ZnO NGs' piezoelectric power cannot reach to its theoretical value, and thus decreasing the effect from Vo is essential. In the present study, c-axis oriented insulator-like sputtered ZnO thin films were grown in various temperatures to fabricate an optimized nanogenerator (NGs). The purity and crystalinity of ZnO were investigated with photoluminescence (PL). Moreover, by introducing a p-type polymer usually used in organic solar cell, it was discussed how piezoelectric passivation effect works in ZnO thin films having different types of defects. Prepared ZnO thin films have both Zn vacancies (accepter like) and oxygen vacancies (donor like). It generates output voltage 20 time lager than n-type dominant semiconducting ZnO thin film without p-type polymer conjugating. The enhancement is due to the internal accepter like point defects, zinc vacancies (VZn). When the more VZn concentration increases, the more chances to prevent piezoelectric potential screening effects are occurred, consequently, the output voltage is enhanced. Moreover, by passivating remained effective oxygen vacancies by p-type polymers, we demonstrated further power enhancement.

  • PDF

Influence of gate insulator treatment on Zinc Oxide thin film transistors.

  • Kim, Gyeong-Taek;Park, Jong-Wan;Mun, Yeon-Geon;Kim, Ung-Seon;Sin, Sae-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.54.2-54.2
    • /
    • 2010
  • 최근까지는 주로 비정질 실리콘이 디스플레이의 채널층으로 상용화 되어왔다. 비정질 실리콘 기반의 박막 트랜지스터는 제작의 경제성 및 균일성을 가지고 있어서 널리 상용화되고 있다. 하지만 비정질 실리콘의 구조적인 문제인 낮은 전자 이동도(< $1\;cm^2/Vs$)로 인하여 디스플레이의 대면적화에 부적합하며, 광학적으로 불투명한 특성을 갖기 때문에 차세대 디스플레이의 응용에 불리한 점이 있다. 이런 문제점의 대안으로 현재 국내외 여러 연구 그룹에서 산화물 기반의 반도체를 박막 트랜지스터의 채널층으로 사용하려는 연구가 진행중이다. 산화물 기반의 반도체는 밴드갭이 넓어서 광학적으로 투명하고, 상온에서 증착이 가능하며, 비정질 실리콘에 비해 월등히 우수한 이동도를 가짐으로 디스플레이의 대면적화에 유리하다. 특히 Zinc Oxide의 경우, band gap이 3.4eV로써, transparent conductors, varistors, surface acoustic waves, gas sensors, piezoelectric transducers 그리고 UV detectors 등의 많은 응용에 쓰이고 있다. 또한, a-Si TFTs에 비해 ZnO-based TFTs의 경우 우수한 소자 성능과 신뢰성을 나타내며, 대면적 제조시 우수한 균일성 및 낮은 생산비용이 장점이다. 그러나 ZnO-baesd TFTs의 경우 일정한 bias 아래에서 threshold voltage가 이동하는 문제점이 displays의 소자로 적용하는데 매우 중요하고 문제점으로 여겨진다. 특히 gate insulator와 channel layer사이의 interface에서의 defect에 의한 charge trapping이 이러한 문제점들을 야기한다고 보고되어진다. 본 연구에서는 Zinc Oxide 기반의 박막 트랜지스터를 DC magnetron sputtering을 이용하여 상온에서 제작을 하였다. 또한, $Si_3N_4$ 기판 위에 electron cyclotron resonance (ECR) $O_2$ plasma 처리와 plasma-enhanced chemical vapor deposition (PECVD)를 통하여 $SiO_2$ 를 10nm 증착을 하여 interface의 개선을 시도하였다. 그리고 TFTs 소자의 출력 특성 및 전이 특성을 평가를 하였고, 소자의 field effect mobility의 값이 향상을 하였다. 또한 Temperature, Bias Temperature stability의 조건에서 안정성을 평가를 하였다. 이러한 interface treatment는 안정성의 향상을 시킴으로써 대면적 디스플레의 적용에 비정질 실리콘을 대체할 유력한 물질이라고 생각된다.

  • PDF

Influence of Dysprosia Addition on Microstructure and Electrical Properties of Praseodymia-based Zinc Oxide Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.144-148
    • /
    • 2005
  • The microstructure and electrical properties of varistor ceramics, which are composed of Zn-Pr­Co-Cr-Dy-oxide system, were investigated at various dysprosia $(Dy_2O_3)$ addition contents. The $DY_2O_3$ microstructurally played the role of inhibition for the densification and grain growth. As the $DY_2O_3$ content increased, the density decreased in the range of $5.51-4.90 g/cm^3$, reaching maximum at $0.5 mol\%$ and the average ZnO grain size decreased in the range of $17.7-6.0{\mu}m$. The incorporation of $DY_2O_3$ significantly improved the nonlinear properties of varistors, above 30 in nonlinear exponent, compared with that without $DY_2O_3$. The varistors with the best performance of nonlinear properties was obtained $DY_2O_3$ content of $1.0 mol\%$, 49 in nonlinear exponent and $0.5{\mu}A$ in leakage current.

Novel Enhanced Flexibility of ZnO Nanowires Based Nanogenerators Using Transparent Flexible Top Electrode

  • Gang, Mul-Gyeol;Ha, In-Ho;Kim, Seong-Hyeon;Jo, Jin-U;Ju, Byeong-Gwon;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.1-490.1
    • /
    • 2014
  • The ZnO nanowire (NW)-based nanogenerators (NGs) can have rectifying current and potential generated by the coupled piezoelectric and semiconducting properties of ZnO by variety of external stimulation such as pushing, bending and stretching. So, ZnO NGs needed to enhance durability for stable properties of NGs. The durability of the metal electrodes used in the typical ZnO nanogenerators(NGs) is unstable for both electrical and mechanical stability. Indium tin oxide (ITO) is used as transparent flexible electrode but because of high cost and limited supply of indium, the fragility and lack of flexibility of ITO layers, alternatives are being sought. It is expected that carbon nanotube and Ag nanowire conductive coatings could be a prospective replacement. In this work, we demonstrated transparent flexible ZnO NGs by using CNT/Ag nanowire hybrid electrode, in which electrical and mechanical stability of top electrode has been improved. We grew vertical type ZnO NW by hydrothermal method and ZnO NW was coated with hybrid silicone coating solution as capping layer to enhance adhesion and durability of ZNW. We coated the CNT/Ag nanowire hybrid electrode by using bar coating system on a capping layer. Power generation of the ZnO NG is measured by using a picoammeter, a oscilloscope and confirmed surface condition with FE-SEM. As a results, the NGs using the CNT/Ag NW hybrid electrode show 75% transparency at wavelength 550 nm and small change of the resistance of the electrode after bending test. It will be discussed the effect of the improved flexibility of top electrode on power generation enhancement of ZnO NGs.

  • PDF

Characteristics of Atomic Layer-Controlled ZnO:Al Films by Atomic Layer Deposition (원자층 증착법을 이용한 ZnO:Al 박막의 특성)

  • Oh, Byeong-Yun;Baek, Seong-Ho;Kim, Jae-Hyun;Lee, Hee-Jun;Kang, Young-Gu;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.40-40
    • /
    • 2010
  • Structural, electrical, and optical properties of atomic layer-controlled AI-doped ZnO (ZnO:Al) films grown on glass by atomic layer deposition (ALD) were characterized with various $Al_2O_3$ film contents for use as transparent electrodes. Unlike films made using sputtering methods, the diffraction peak position of the films grown by ALD based on alternate self-limiting surface chemical reactions moved progressively to a wider angle (red shift) with increasing $Al_2O_3$ film content, which seems to be evidence of Zn substitution in the film by layer-by-layer growth. By adjusting the $Al_2O_3$ film content, the electrical resistivity of ZnO:Al film with the $Al_2O_3$ film content of 2.96% reached the lowest electrical resistivity of $9.80{\times}10^{-4}\Omega{\cdot}cm$, in which the carrier mobility, carrier concentration, and optical transmittance were $11.20\;cm^2V^{-1}s^{-1}$, $5.69{\times}10^{20}\;cm^{-3}$, and 94.23%, respectively. Moreover, the estimated figure of merit value for the transparent conductive oxide applications from our best sample was $7.7\;m{\Omega}^{-1}$.

  • PDF