• Title/Summary/Keyword: Zn-Ni

Search Result 1,578, Processing Time 0.03 seconds

필름 스피커 적용을 위한 PZT/polymer 복합체의 후막 제조 및 압전 특성 평가

  • Son, Yong-Ho;Eo, Sun-Cheol;Kim, Seong-Jin;Gwon, Seong-Yeol;Gwon, Sun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.346-346
    • /
    • 2007
  • 압전세라믹 재료는 현재 압전 변압기, actuator, transducer, sensor, speaker 등에 광범위하게 이용이 되고 있다. 이 중에서 압전세라믹 소결체를 이용한 스피커의 제조는 가공이 까다롭고, 대형의 크기로 제작 시 소자가 깨지는 등의 많은 제약을 받고 있으며, 저음 특성이 떨어져 응용 범위가 한정되어 있다. 따라서 최근에는 이러한 단점을 극복하기 위하여 세라믹/고분자 복합체를 이용한 필름 스피커를 제작하고자 시도하고 있다. 이러한 세라믹/고분자 0-3형 압전 복합체를 이용할 경우, 제품의 경량화를 실현할 수 있고, 크기나 환경의 영향을 거의 받지 않으므로, 고기능성 스피커로의 응용에 적합할 것으로 보인다. 따라서 본 연구에서는 PZT계의 세라믹와 PVDF, PVDF-TrFE, Polyester, acrylic resin 등의 여러 고분자 물질과의 복합체를 제조하여 압전특성을 평가하였다. 본 실험은 먼저 $(Pb_{1-a-b}Ba_aCd_b)(Zr_xTi_{1-x})_{1-c-d}(Ni_{1/3}Nb_{2/3})_c(Zn_{1/3}Nb_{2/3})_dO_3$ (이하 PZT라 표기)의 최적화 조성을 선택하여, $1050^{\circ}C$에서 소결된 분말을 48시간 ball milling방법 로 약 $1{\mu}m$ 크기로 분쇄하였다. 고분자 물질들은 알맞은 용제들을 선택하여 녹였다. 그 다음 소결된 PZT분말과 고분자를 50:50, 60:40, 65:35, 70:30등의 무게 분율로 혼합하고, 분산제, 소포제 등을 첨가하여 3단 roll mill을 이용하여 충분히 분산시켜 페이스트 (Paste)를 제조하였다. 제조된 페이스트를 ITO가 코팅된 PET필름 위에 스크린 프린팅 법을 사용하여 인쇄하여 $120^{\circ}C$에서 5분간 건조하였다. 코팅된 복합체의 두께는 약 $80{\mu}m$ 정도로 측정되었다. Ag 페이스트를 이용한 상부 전극 형성에도 스크린 프린팅 법을 적용하였다. 이를 $120^{\circ}C$에서 4 kV/mm의 DC 전계로 분극 공정을 수행한 후 전기적 특성을 평가하였다. 유전특성을 조사하기 위해서 LCR meter (EDC-1620)를 사용하였고, 시편의 결정구조는 XRD (Rigaku; D/MAX-2500H)을 통해 분석하였으며, 전자현미경(SEM)을 이용하여 미세구조를 분석하였다. 압전 전하상수$(d_{33})$ 값은 APC 8000 모델을 이용하여 측정하였다. PZT의 혼합비가 증가할수록 비유전율 및 압전 전하 상수 등의 전기적 특성이 증가되었다. 또 여러 고분자 물질 중에서 PVDF-TrFE 수지가 가장 우수한 특성을 보였다. 이는 PVDF-TrFE 수지가 압전성을 나타내기 때문인 것으로 판단되었다.

  • PDF

Physical and Chemical Properties of Cover Soils of waste Landfills in Kyonggi-Do Area (경기도 지역 쓰레기 매립지 복토층 토양의 이화학성)

  • 이상모;김기대;이은주;김판기;이군택
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2002
  • The physical and chemical properties of cover soils of 10 waste landfill sites in Kyonggi-Do area, where social circumstances at present forces to consider the reuse of landfill, were investigated to provide the informations of soil environment which are necessary to establish the appropriate ecological restoration plan of waste landfills. The pH and electrical conductivity of soils were higher in landfills sites than in reference sites (area around landfill sites), indicating the salt accumulation in surface soil. However, total-N and organic matter contents were lower in landfills sites than in reference sites. In landfill sites, the total-N and plant available-P contents were less than 0.15% and 20mg/kg, respectively. Exchangeable cations (K, Ca, Mg and Na) and heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) contents varied between the landfill sites, but were higher in landfills sites than in reference sites. The major exchangeable cation of soil was Ca. Heavy metal contents were much lower than the critical concentration which phytotoxicity is considered to be possible and the standard for agricultural land of Korean Soil Environmental Preservation Act. Therefore, the proper soil management plan to increase the soil fertility is recommended for the ecological restoration of landfill using natural or artificial vegetation.

Relationship between Selected Metal Concentrations in Korean Raspberry (Rubus coreanus) Plant and Different Chemical Fractions of the Metals in Soil

  • Ahn, Byung-Koo;Lee, Jang-Choon;Han, Soo-Gon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.591-596
    • /
    • 2011
  • The applications of chemical fertilizers and various types of organic materials may cause heavy metal accumulation in soil. In this study, we conducted to investigate the relationship between the different chemical forms of heavy metals such as Cr, Cd, Pb, Cu, Ni, and Zn retained in soil and the metal concentrations in Korean raspberry plant. Forty five soil samples were collected from 2 to 6 years old Korean raspberry cultivation fields (RCFs), Gochang, Korea, to determine total, exchangeable (1.0 M $MgCl_2$-extractable), DTPA-extractable metal contents. The leaves and fruits of raspberry plant were sampled at harvest stage. Total metal contents in soils ranged from $0.87mg\;kg^{-1}$ to $66.82mg\;kg^{-1}$. Exchangeable and DTPA-extractable metals ranged between 0.02 and $0.67mg\;kg^{-1}$ and between $0.05mg\;kg^{-1}$ and $7.07mg\;kg^{-1}$, respectively. The metal concentrations in the plant leaf and fruit determined on a dry-basis were between $1.30mg\;kg^{-1}$ and $38.82mg\;kg^{-1}$ and between $0.05mg\;kg^{-1}$ and $21.51mg\;kg^{-1}$, respectively, but Cd and Pb were not detected in the leaf. The total, exchangeable, and DTPA-extractable contents of the metal ions in soil were directly correlated one another, but the contents of different metals in the different fractions were inversely correlated in general. Most of total and DTPA-extractable metals in the soil were directly correlated with the contents of the same metals in the plant, whereas exchangeable metals in the soil were not statistically correlated with the same metals in plants. Thus, we concluded that the metal contents in the raspberry field soils were much lower thanthe levels of Soil Contamination Warning Standard (SCWS), and the plant metal concentrations were also less than the maximum permissible limits. The total and DTPA-extractable metals in the soil were closely related to the metal concentrations in the plant.

Interaction of the Post-transition Metal Ions and New Macrocycles in Solution

  • Jung, Oh-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.687-691
    • /
    • 1993
  • Complexation of $Cd^{2+},\;Pb^{2+}\;and\;Hg^{2+}$ ions with four cryptands were studied by potentiometry and solution calorimetry in various weight percent methanol-aqueous solvent at 25${\circ}$C under $CO_2$free nitrogen atmosphere. The stabilities of the complexes were dependent on the cavity size of macrocycles. The $Hg^{2+}$ ion stability constants are higher than those of $Cd^{2+}\;and\;Pb^{2+}$ ion. All the cryptands formed complexes having 1 : 1 (metal to ligand) mole-ratio except for $Hg^{2+}-L_1$ (cryptand 1,2b: 3,5-benzo-9,14,17-trioxa-1,7-diazabicyclo-(8,5,5) heptadecane) and $Cd^{2+}-L_2$ (cryptand 2,2b: 3,5-benzo-10,13,18,21-tetraoxa-1,7-diazabicyclo (8,5,5) eicosane) complexes. $Hg^{2+}-L_1$ complex was a sandwitch type, and the $Cd^{2+}-L_2$ complex showed two stepwise reactions. Thermodynamic parameters of the $Cd^{2+}-L_2$ complex were $6.08(log\;K_1)$, -7.28 Kcal/mol $({\Delta}H_1)$, and $4.78\;(log\;K_2)$, -4.62 Kcal/mol $({\Delta}H_2)$, respectively, for 1 : 1 and 2: 1 mole-ratio. The sequences of the selectivity were increased in the order of $Hg^{2+}\;>Pb^{2+}\;>Cd^{2+}$ ion for $L_3\;and\;L_4$ macrocycles, and the $L_2$-macrocycle has a selectivity for $Cd^{2+}$ ion relative to $Zn^{2+},\;Ni^{2+},\;Pb^{2+}\;and\;Hg^{2+}$ ions. Thus, it is expected that the $L_2$ can be used as carrier for seperation of the post transition metals by macrocycles-mediated liquid membrane because $L_2$ is not soluble in water, and the difference of stability constants of the metal complexes with $L_2$ are large as compared with the other transition metal complexes. The $^1H\;and\;^{13}C-NMR studies indicated that the nitrogen atoms of cryptands have greater affinity to the post transition metal ions than the oxygen atoms, and that the planarities of the macrocycles were lost by complexation with the metal ions because of the perturbation of ring current of benzene molecule attached to macrocycles and counter-anions.

Bronze Production Technology in the Early Iron Age: A comparative study of bronze artifacts recovered from the Hoam-dong site in Chungju and Chongsong-ri in Buyeo (초기철기시대 청동기의 제작기술 - 충주 호암동유적과 부여 청송리유적 출토 청동기의 비교 연구-)

  • Han, Woorim;Hwang, Jinju;Kim, Sojin
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.4
    • /
    • pp.224-233
    • /
    • 2018
  • Thirty-three Early Iron Age bronzes at the sites of Hoam-dong in Chungju and Cheongsong-ri in Buyeo were investigated in order to study the manufacturing technique and the provenance of lead. Chemical analysis using X-ray fluorescence showed that 33 bronzes consist of copper(Cu), tin(Sn) and lead(Pb) served as major elements. Major and minor elemental analyses by EPMA were performed on two mirrors and 2 weapons of the bronzes investigated. The results shows that bronze mirrors from Chungju and Buyeo were high-tin bronzes(> 30 wt%). And 20% of tin and 5% of lead were founded in bronze weapons. Iron, zinc, arsenic, silver, nickel, sulfur and cobalt detected in four bronzes as minor and trace elements. The four bronzes were alloyed considering their function and were not heat treated after casting due to their high tin content. Lead isotope analysis using TIMS indicates that thirty-three bronzes were distributed southern Korea peninsula except Zone 1. As a result, lead raw materials came from various regions in Korean Peninsula not from Gyeongsang-do regions. The manufacturing techniques of bronze ware generalized at this age, and bronze was produced in various sites using raw materials from various sources.

Changes in sedimentary structure and elemental composition in the Nakdong Estuary, Korea (낙동강 하구역 퇴적구조 및 원소조성 변화에 관한 연구)

  • Kim, Yunji;Kang, Jeongwon;Park, Seonyoung
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.213-223
    • /
    • 2021
  • To understand the sedimentary environment of Scirpus planiculmis habitat (Myeongji and Eulsuk tidal flats) in the Nakdong Estuary, this study analyzed the statistical parameters (sorting, skewness, and kurtosis) of grain size data and the major (Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P), minor (Li, Sc, V, Cr, Co, Ni, Cu, Zn, Sr, Zr, Cs, Pb, Th, and U), and rare earth elements (REEs) in sediment cores. For Myeongji, the sediment structure of the upper part of the cores was poorly sorted, more finely skewed, and more leptokurtic due to construction of the West gate. By contrast, the Eulsuk cores all differed due to the contrasting floodgate operation patterns of the West and East gates. The linear discriminate function (LDF) results corresponded to the statistical parameters for grain size. At the Eulsuk tidal flat (sites ES05 and ES11), elemental distributions were representative of Al-, Fe- and Ca-associated profiles, in which the elements are largely controlled by the accumulation of their host minerals (such as Na- and K-aluminosilicate and ferromagnesium silicate) and heavy detrital minerals at the sites. Detrital minerals including the aluminosilicates are major factors in the elemental compositions at ES05, diluting the REE contents. However, clay minerals and Fe-oxyhydroxides, as well as REE-enriched heavy minerals, appeared to be controlling factors of the elemental composition at ES11. Therefore, the mineral fractionation process is important in determining the elemental composition during sedimentation, which reflects the depositional condition of riverine-saline water mixing at both sites.

Concentration of heavy metals in shellfishes and health risk assessment from Korean coastal areas

  • Ka Jeong Lee;Eun Hye Kang;Minchul Yoon;Mi Ra Jo;Hong Sik Yu;Kwang Tae Son
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.12
    • /
    • pp.626-636
    • /
    • 2022
  • Shellfish are exoskeleton-bearing aquatic invertebrates that consume various organic and inorganic substances floating in seawater through filter feeding. Heavy metals are known as absorbed and accumulated in seawater. Some of the toxic heavy metals are highly accumulated in seawater, and exposure to them can cause a variety of risks to the human body. Since Koreans like to eat seafood, they are more likely to be exposed to contaminated seafood with heavy metals. In this study, nine types of heavy metals were analyzed on ten different shellfish species in the coastal area of South Korea. The risk assessment was also done on shellfish in which heavy metals were detected. Zinc (Zn) and copper (Cu) were identified at an average of 56.7 mg/kg (6.70 to 466 mg/kg) and 13.2 mg/kg (0.064 to 143 mg/kg), respectively. Lead (Pb) average of 0.208 mg/kg (0.000750 to 1.02 mg/kg), cadmium (Cd) average of 0.454 mg/kg (0.0388 to 1.56 mg/kg) and mercury (Hg) average of 0.0266 mg/kg (0.00548 to 0.174 mg/kg) were identified. Additionally, arsenic (As), chromium (Cr), nickel (Ni), and silver (Ag) were also identified as average concentrations of 4.02 (0.460 to 15.0 mg/kg), 0.167 (< limit of quantification [LOQ] to 0.820 mg/kg), 0.281 (< LOQ to 1.46 mg/kg), and 0.158 mg/kg (< LOQ to 1.15 mg/kg). The result indicates that the monitoring results of heavy metals in most shellfish satisfied the Korean standard. However, Pb and Cd have exceeded some foreign standards, such as the United States and the EU. The permissible human exposure calculated using the heavy metal intake and detection amount was lower than the Joint FAO/WHO Expert Committee on Food Additives human safety standard, and the risk of heavy metals from shellfish consumption was at an acceptable level.

Mineralogy and Geochemistry of Shale Deposits in the Lower Anambra Basin, Nigeria: Implication for Provenance, Tectonic Setting and Depositional Environment

  • Olugbenga Okunlola;Agonsi Udodirim Lydia;Aliyu Ohiani Umaru;Raymond Webrah Kazapoe;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.799-816
    • /
    • 2023
  • Mineralogical and geochemical studies of shales within the Lower Anambra Basin was conducted to unravel the depositional environment, provenance, maturity, paleo-weathering conditions, and tectonic settings. Mineralogical studies conducted using X-ray diffraction analysis revealed that the samples were composed of kaolinite, montmorillonite, chlorite, and illite. KaolinIite is the dominant mineral, constituting approximately 41.5% of the bulk composition, whereas the non-clay minerals are quartz, ilmenite, and sillimanite. Geochemical analysis showed a predominance of SiO2, Al2O3, and Fe2O3 contents of the shale samples with mean values of 52.29%, 14.09%, and 6.15% for Imo Shale (IS); 52.31%, 16.70%, and 7.39% for Mamu Shale (MS); 43.21%, 21.33%, and 10.36% for Enugu Shale (ES); 53.35%, 15.64%, and 7.17% for Nkporo Shale (NS); and 51.24%, 17.25%, and 7.78% for Agwu Shale (AS). However, the shales were depleted in Na2O, MgO, K2O, MnO, TiO2, CaO, and P2O5. The trace element ratios of Ni/Co and Cu/Zn of the shale suggest an oxic depositional environment. The average SiO2 vs. Al2O3 ratio of the shales indicated textural maturity. Compared to the PAAS standard, the shales plot below the PAAS value of 0.85, suggesting a high degree of maturity and intensive chemical weathering, further confirmed on a CIA vs. PIA plot. On log (K2O/Na2O) against SiO2 and tectonic setting discriminant function diagrams, the shales plot mostly in the field of passive continental margin tectonic setting. The discriminant function diagrams as well as Al2O3/TiO2 ratio of the shales showed that they were derived from a mixed source (mafic and intermediate igneous rocks).

Purification and Characterization of Mitochondrial Mg2+-Independent Sphingomyelinase from Rat Brain

  • Jong Min Choi;Yongwei Piao;Kyong Hoon Ahn;Seok Kyun Kim;Jong Hoon Won;Jae Hong Lee;Ji Min Jang;In Chul Shin;Zhicheng Fu;Sung Yun Jung;Eui Man Jeong;Dae Kyong Kim
    • Molecules and Cells
    • /
    • v.46 no.9
    • /
    • pp.545-557
    • /
    • 2023
  • Sphingomyelinase (SMase) catalyzes ceramide production from sphingomyelin. Ceramides are critical in cellular responses such as apoptosis. They enhance mitochondrial outer membrane permeabilization (MOMP) through self-assembly in the mitochondrial outer membrane to form channels that release cytochrome c from intermembrane space (IMS) into the cytosol, triggering caspase-9 activation. However, the SMase involved in MOMP is yet to be identified. Here, we identified a mitochondrial Mg2+-independent SMase (mt-iSMase) from rat brain, which was purified 6,130-fold using a Percoll gradient, pulled down with biotinylated sphingomyelin, and subjected to Mono Q anion exchange. A single peak of mt-iSMase activity was eluted at a molecular mass of approximately 65 kDa using Superose 6 gel filtration. The purified enzyme showed optimal activity at pH of 6.5 and was inhibited by dithiothreitol and Mg2+, Mn2+, Ni2+, Cu2+, Zn2+, Fe2+, and Fe3+ ions. It was also inhibited by GW4869, which is a non-competitive inhibitor of Mg2+-dependent neutral SMase 2 (encoded by SMPD3), that protects against cytochrome c release-mediated cell death. Subfractionation experiments showed that mt-iSMase localizes in the IMS of the mitochondria, implying that mt-iSMase may play a critical role in generating ceramides for MOMP, cytochrome c release, and apoptosis. These data suggest that the purified enzyme in this study is a novel SMase.

Chemical Compositions of Sewage Sludges and Nitrogen Mineralization in Sewage Sludge Applied Soil (하수오니의 화학적 조성과 토양중 질소 무기화)

  • Park, Mi-Hyun;Lee, Seung-Heon;Yoo, Sun-Ho;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.189-196
    • /
    • 1998
  • Swage sludge cakes produced from domestic wastewater treatment plants were collected from 21 different sites throughout Korea, and chemical properties of the sludge samples were determined. Inorganic nutrient contents did not indicate great differences among swage sludges from each sites, whereas the toxic heavy metal contents differed greatly. T-N, $NH_4{^+}-N$ and $NO_3{^-}-N$ contents from 21 sites sludges ranged 2.3-6.0, 291-4284, $1.4-58.8mg\;kg^{-1}$, respectively. Heavy metal (Cd, Cu, Pb and Zn) contents ranged 2.86-58.22, 144.0-5417.3, N.D.-943.5, and $N.D.-8,083mg\;kg^{-1}$, respectively. One of the sludges was treated to soils at rates of 12.5, 25, 50. and 100, $Mg\;ha^{-1}$ and incubated for 12 weeks to determine nitrogen materialization rate. Ammoniun nitrogen content decreased sharply at higher rates of sludge treatment up to 8 weeks after treatment and did not change much, while $NO_3{^-}$ increased at all treatment levels. The net amount of mineralized N of sludge treatment rates (12.5, 25, 50, and $100Mg\;ha^{-1}$) during 12weeks incubation were 189.0, 277.2, 303.8 and $376.6mg\;kg^{-1}$.

  • PDF