Interaction of the Post-transition Metal Ions and New Macrocycles in Solution

Oh-Jin Jung

Department of Environmental Science, College of Natural Science, Chosun University, Kwanju 501-759 Received February 15, 1993

Complexation of Cd2+, Pb2+ and Hg2+ ions with four cryptands were studied by potentiometry and solution calorimetry in various weight percent methanol-aqueous solvent at 25 $^{\circ}$ under CO₂ free nitrogen atmosphere. The stabilities of the complexes were dependent on the cavity size of macrocycles. The Hg2+ ion stability constants are higher than those of Cd^{2+} and Pb^{2+} ion. All the cryptands formed complexes having 1:1 (metal to ligand) mole-ratio except for $Hg^{2+}-L_1$ (cryptand 1,2b: 3,5-benzo-9,14,17-trioxa-1,7-diazabicyclo-(8,5,5) heptadecane) and $Cd^{2+}-L_2$ (cryptand 2,2b: 3,5-benzo-10,13,18,21-tetraoxa-1,7-diazabicyclo (8,5,5) eicosane) complexes. $Hg^{2+}L_1$ complex was a sandwitch type, and the $Cd^{2+}L_2$ complex showed two stepwise reactions. Thermodynamic parameters of the $Cd^{2+}L_2$ complex were 6.08 (log K_1), -7.28 Kcal/mol (ΔH_1), and 4.78 (log K_2), -4.62 Kcal/mol (ΔH_2), respectively, for 1:1 and 2:1 mole-ratio. The sequences of the selectivity were increased in the order of $Hg^{2+}>Pb^{2+}>Cd^{2+}$ ion for L_3 and L_4 macrocycles, and the L_2 -macrocycle has a selectivity for Cd²⁺ ion relative to Zn²⁺, Ni²⁺, Pb²⁺ and Hg²⁺ ions. Thus, it is expected that the L_2 can be used as carrier for separation of the post transition metals by macrocycles-mediated liquid membrane because L_2 is not soluble in water, and the difference of stability constants of the metal complexes with L_2 are large as compared with the other transition metal complexes. The ¹H and ¹³C-NMR studies indicated that the nitrogen atoms of cryptands have greater affinity to the post transition metal ions than the oxygen atoms, and that the planarities of the macrocycles were lost by complexation with the metal ions because of the perturbation of ring current of benzene molecule attached to macrocycles and counter-anions.

Introduction

A large numbr of acyclic and bicyclic lignads possessing oxygen, nitrogen, sulfur and/or other donor atoms have been synthesized and their cation-binding behaviors has been investigated since the Pederson's first cyclic polyether, called crown ether. These synthetic ligands exhibit characteristic cation-binding behavior for alkali, alkaline earth metal ions, and heavy and transion metal ions.¹

The polyazamacrocycles behave as relatively strong bases in their first protonation steps and as weaker bases in the last protonation steps.² This grouping of the basicity constants is revealed in typical azamacrocycles, and has been explained in terms of charge-repulsion effects.³⁴

The possibility for these azamacrocycles to bind more than one metal ion in the macrocycle framework has arisen the curiosity of several research groups.

The work to date has been limited to macrocyclic complexes of the first row transition elements such as Zn^{2+} , Cu^{2+} and Ni²⁺. Since second and third transition series elements are important as catalysts and some of the elements have large affinities for nitrogen, it is obvious that future works need to involve them.

Although many examples of synthetic macropolycyclic ligands are known, we need new preorganized receptors having even greater complex stabilities or higher selectivities for certain cations and neutral molecules. The reported examples of macrocyclic polyether have spherical, cylindrical basket, and folder shapes.⁵ It seems that nitrogen atoms are essential for the more complicated molecules to coordinate with transition metal ions. Cryptands, with nitrogen atoms at the bridgeheads, have 10^5 - 10^6 times greater association constants for certain cations than those with carbon atoms

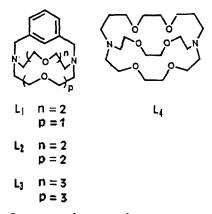


Figure 1. Structures of macrocycles.

at the bridgehead position.6

The post transion metal ions such as Cd^{2+} , Pb^{2+} and Hg^{2+} are very toxic. The design of highly selective ligands which are able to remove hamful cation is an interesting research subject, and we have need to separate the post transition metals like Cd^{2+} , Pb^{2+} and Hg^{2+} from other inorganic and organic substances for the control of toxic metal ions in the environment. Therefore, we have to measure the stability constant (log K) for interaction of the ligands and metals.

In the present paper, we have synthesised new three macrocyclic compounds having nitrogen bridgeheads (Figure 1) and reasonable cavity size more closely matching the post transition metal cation, such as Cd^{2+} , Pb^{2+} and Hg^{2+} ions. We have discussed the interaction of the macrocycles and metal ions in solution, and we have observed process of the complexation and the mole ratios by using both potentiometry and solution calorimetry. We have also characterized structures of the complexes in solution from the ¹H and ¹³C-NMR spectra. We have also discussed the factors affecting the stability constants of these complexes.

Experimental

Materials. The crystalline solid of metal nitrates [Cd(II) from Fischer, Pb(II) from Allied chemicals and Hg(II) from Mallinckrodt], tetramethyl ammonium nitrate (Johnson Mattley Electronics), methanol, tetramethyl ammonium hydroxide, nitric and hydrochloric acid (Aldrich) were used without further purification. Deionized distilled water was used for the potentiometric and solution calorimetic studies. All of the chemicals for the synthesis of macrocycles were purchased from the Aldrich Chemical Company. Molecular weights were determined by electron impact HRMS. and the data of elemental analysis of each macrocycle were obtained by Yamato CHN corder.

Preparation of L₁ (Cryptand 1.2B; 3,5-benzo-9,14, 17-trioxa-1,7-diazabicyclo-(8,5,5) heptadecane) and L₂ (Cryptand 2,2B; 3,5-benzo-10,13,18,21-tetraoxa-1,7-diazabicyclo (8,5,5) elcosane). 1,4,10-Trioxa-7,13 diaza-cyclopentadecane (0.56 g, 2.58 mmol) or 1,4,10,13-Tetraoxa-7,16 diazacyclo-octadecane (0.65 g, 2.48 mmol) was stirred with 0.68 g (2.67 mmol) of α , α '-dibromo-m-Xylene in 15 m' of CH₃CN solution containg 15 g of Na₂CO₃ at room tempera-

 L_1 ; ¹H-NMR δ 2.84 (m, 8H), 3.63 (m, 16H), 6.2-6.8 (m, 3H), 8.60 (s, 1H); ¹³C-NMR δ 54.85, 58.62, 68.93, 70.06, 120.48, 125.62, 128.02, 140.35; Ms m/e 320, mp. 100°C

 L_2 ; ¹H-NMR δ 2.72 (m, 8H), 3.61 (m, 20H), 6.90-7.15 (m, 3H), 8.42 (s, 1H); ¹³C-NMR δ 56.12, 59.64, 69.67, 70.60, 125.62, 127.24, 129.88, 142.07; Ms m/e 364, mp. 101°C

Preparation of L_3 (**Cryptand 3,3B**; **3,5-benzo-10,13**, **16,19,21,24,27-hexaoxa-1,7-diazabicyclo-(11,11,5) hexacosane).** α,α' -diamino-m-Xylene (0.68 g, 2.67 mmol) was stirred with ditosyl ethers of glycol¹⁸ in 20 ml of CH₃CN contaning 15 g of K₂CO₃ at room temperature and refluxed overnight. This mixture was treated in condition for preparation of L_2 .

L₃; ¹H-NMR δ 2.65 (t, J=6.3 Hz, 8H), 3.60 (m, 28H), 7.1 (m, 3H), 7.9 (s, 1H); ¹³C-NMR δ 55.24, 60.60, 70.44 70.89, 71.20, 127.52, 127.72, 129.61, 141.14; mp. 104°C; MS m/e 452, Anal. Calcd for C₂₄H₄₀N₂O₆: C, 63.69; H. 8.90 Found: C, 63.48; H, 9.02

Preparation of L_4 (Cryptand [22'2]; 5,8,15,18,23, 26-hexaoxa-1,12-diazabicyclo-(10,8,8) octacosane).

Table 1. Protonation and Stability Constants of Cation Complexes with Macrocycles at 25° and 1=0.1 mol. dm⁻³ (MeNNO₃) in Water-Methanol Media

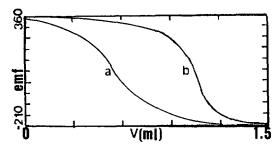
Cations	Mole-ratio (L: M ²⁺)		$\log K$ of co	mplex with ligand	M r	ΔH (T ΔS)		
		L_1	L_2	L_3	L_4	Media	(Kcal/mol)	Methods
$H^{2+} pK_1$		8.69	10.39	11.52	9.69	50%-MeOH		Pot.
pK ₂		5.54	5.64	5.83	7.40			
Cd ²⁺	1:1	2.26	6.52	_	4.26	50%-MeOH		Pot.
		-	5.48	-	_	20%-MeOH		Pot.
		-	6.08	-	—	50%-MeOH	- 7.28	Cal.
							(8.35)	
	2:1	1.24	5.26	_	-	50%-MeOH		Pot.
		-	4.78	-	-	50%-MeOH	- 11.9	Cal.
							(-12.8)	
P b ²⁺	1:1	2.05	5.85	6.47	6.59	50%-MeOH		Pot.
		-	3.62	4.58	-	20%-MeOH		Pot.
	2:1	0.09	1.79	—	-	50%-MeOH		Pot.
Hg²⁺	1:1	-	11.0	10.3	13.2	50%-MeOH		Pot.
	2:1	20.5	-	-	—	50%-MeOH		Pot.
Zn ²⁺	1: 1	3.18	4.72	_	2.86	50%-MeOH		Pot.
Ni²⁺	1:1	2.93	2.16	_	-	50%-MeOH		Pot.
	Cryptand 22	Crypt	and 222	Cryptand 221	Cryptand 21	11 Med	lium	Methods
Cd ²⁺	5.13		7.10	10.0 ⁴	<5.3ª	H	I₂O	pot
Pb ²⁺	6.90	1	2.0 ²	15.14	7.93*	H	l₂O	pot
Hg^{2+}	17.9*	1	18.2*	20.0°	15.9°	I	l₂O	pot
Ni ²⁺	_	<	(2.50 [*]	4.28'	<4.50 ^a	I	I₂O	pot
Zn ²⁺	3.19		2.48ª	5.41ª	<5.30	H	H ₂ O	pot

^aReed M. Izatt, J. S. B. Bradshaw, S. A. Nielson, J. D. Lamb, and J. J. Christensen, Chem. Rev., **85**, 271-339 (1985). ^bG. Andereg, Helv. Chim. Acta. **58**, 1218 (1975). 1,10-diamino-4,7-dioxadecane needed for cryptand [22'2], L_4 , was prepared from ethane-1,2-diol after cyanoethylation and reduction with lithium aluminum hydride in THF⁷. A stepwise cyclocondensation of 1-chloro-8-iodo-3,6-dioxaoctane (3.50 mmol) and 1,10-diamino-4,7-dioxadecane (0.268 g, 1.52 mmol) in the presence of sodium carbonate in acetonitrile solvent gave cryptand [22'2], L_4 .

*L*₄; ¹H-NMR δ 1.70 (m, 4H), 2.51 (t, *J*=6.3 Hz, 4H) 2.60 (m, 8H), 3.65 (m, 20H); ¹³C-NMR δ 24.2, 46.0, 48.3, 69.6, 70.3, 70.6; MS m/e 404, Anal. Calcd for C₂₀H₄₀N₂O₆: C, 59.44; H, 9.980, Found: C, 59.32; H, 10.01.

Potentiometric Measurements. Protonation and stability constants for the ligands were determined potentiometrically using an Orion-Ross double junction semimicro combination glass electrode. The semimicro potentiometric titrations were carried out in a sealed, thermostated vessel (5 ml, $25\pm 0.1^{\circ}$ C) under CO₂ free nitrogen atmosphere. During each titration run, the e.m.f. values under constant ionic strength were recorded as a function of amount of titrant added. Standard electrode potontial, E° (320.2 mV) and the ion product of water at 0.1 M ionic strength, pH'_w (13.70) were determined by titrating a HNO₃ solution to a standardized Me₄NOH solution. The protonation and stability constants (Table 1) were computed from data obtained by titrating acidified ligand solutions with Me₄NOH in the absence and presence, respectively, of the metal ion.

The ionic strength was maintained at 0.1 M with Me₄NNO₃ for all the titrations. The filling solution of the electrode was 0.8 M Me₄NNO₃. Program SUPERQUAD⁸ was used for all the calculations.


Calorimetric Measurements. A Tronac Model 450 isoperibol titration calorimeter was used throughout. Enthalpies of protonation and metal ion binding for ligands were determined by a calormetric titration technique described previously.⁹ Corresponding entropy values can be calculated according to the relation: 2.303 RT $\Delta \log K = \Delta H - T\Delta S$. The ionic strength of 0.1 M was also maintained with Me₄NNO₃ for all the calorimetric titrations. Program REACTIONS¹⁰ was used for all the calculations of the calorimetric data.

NMR Measurements. ¹H and ¹³C-NMR spectra were measured on a varian Gemeni 200 MHz spectrometer. The NMR solvent was in CD₃OD and the chemical shifts were referenced to Me₄Si.

Results and Discussion

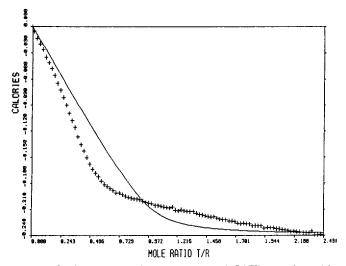
The synthetic ligands can be regarded as tricyclic compounds. They can also be considred as derivatives of diazacrown with an alkylene-ether chain linking two nitrogens. In ligands, L_1 - L_3 . The bridge consists of five atoms with it's limited frexibility by the presence of a rigid benzene ring which shares three atoms with the bridge. The interatomic distance between two nitrogen atom is 6.7 Å¹¹ for L_2 ligand and the L_2 and L_3 may be shorter or longer than the L_4 . For L_4 , a more flexible bridge with ten atoms joined two nitrogen atoms, the *N*-*N* interatomic distance is 7.08 Å⁷ which is approximately 0.2 Å longer whan the 6.87 Å for cryptand [222]¹¹.

The potentiometric titration-curves for the L_2 and its Hg²⁺ complex were given in Figure 2, and protonation and stability constants of several cation complexes with macrocycle, L_1L_4

Figure 2. Potentiometric titration curves of macrocycle (L_2 (a) and its Hg(II) complex (b).

were also presented in Table 1 for comparison the synthetic ligands with regular cryptands.

The order of the basicity in Table 1 was $L_3 \ge L_4 > L_2 > L_1$ and then it is indicating that order of the basicities are increased regulary with increase in the cavity-sizes of macrocyclic ring. The basicity trends can be explained in terms of the degree of twistness and cavity-size of the macrocyclic ring¹²⁾. Hence, the twistness of tricyclic compounds were increased in order of $L_1 < L_2 < L_4 \leq L_3$. The changes of the stability constants of L_1 - L_4 complexes for the post transition metal ions were independent on the basicity. However, the order of the complex stabilities was Ni²⁺ \leq Zn²⁺ for L_1 and L_2 , and $Pb^{2+} < Cd^{2+} < Hg^{2+}$ for L_1 - L_3 . Thus, the stabilities of the complexes were dependent on the cavity-size of the macrocycles because most of metal ions follow the size rule. The stabilities of the 18-crown-6 complexes containing soft cations such as Ag^+ , Tl^+ , Hg^{2+} and Pb^{2+} , also showed similar trend to follow this size rule¹³. Especially, the Hg²⁺ ion stability constants are higher than those of Cd2+ and Pb2+ ions because entropy effect is increased by forming the complexes. The same results were observed in metal complexes with other ligands¹⁴⁻¹⁵.


The stability constants for 1 : 1 cation-macrocycle complexes reveal that log K values for complexes with L_2 and L_3 were much smaller than those with the L_4 for all cations in this study. Ligand, L_2 , is similar to the cryptand 221 in configuration and number of donating atoms, but it is expected that cavity size of macrocyclic ring for L_2 is smaller than cryptand 221 because of benzene ring attached to the ligands. In this study, the log K values for Cd(II) and Zn(II) complexes with L_2 were larger than those with cryptand 22 because the flexibility of L_2 is higher than the cryptand 22 and 221. However, the stability constants of Pb(II) and Hg(II) complexes with L_2 were smaller than those with cryptand 22 and 221 because the cavity-size of L_2 is smaller than those of the cryptand 22 and 221. Thus, these results can be explained as ion-in-the hole model and the flexibility of macrocycles¹¹.

Frensdrof¹⁶ noted that log K values for the reaction of cyclic polyethers with metal cations are 10^3 - 10^4 larger in methanol than in water. The log K values listed in Table 2 was increased regularly with increase in weight percent of CH₃OH. The enhancement of stability in methanol is primarily an enthalpic effect¹⁷. The enthalpic stabilization is explained by the cation desolvation step in the solvent of lower dielectric constant. Generally, most of the complexes listed in Table 1 have 1:1 mole-ratio, except for Hg²⁺-L₁ complex. On the other hand, stoichiometry of 2:1 (ligand: metal) for Hg²⁺ and Cd²⁺ complexes gives a sandwich type¹³. Thermo-

Table 2. ¹H-chemical shifts of macrocycles 1,2,3- and 4 affected by Cd²⁺ and Pb²⁺ ion^a

Ligand Protons	L_1		L_2			L_3			L,				
	Ha	H_b	H_c	H_a	H_b	H	H_a	H_{t}	H_c	Ha	H	H_{ϵ}	H_d
Ligand (ppm)	2.84	3.63	4.60	2.72	3.61	4.40	2.65	3.60	4.90	1.70	2.51	2.60	3.65
Comp. (ppm)	2.86	3.68	4.63	2.78 (2.76) [¢]	3.76 (3.74) ⁹	4.52 (8.46) [¢]	2.69	3.71	4.99	1.75	2.62	2.63	3.77
Shift (ppm)	0.02	0.05	0.03	0.06 (0.04) ⁶	0.15 (0.13) ⁹	0.12 (0.06) ^s	0.04	0.11	0.09	0.05	0.11	0.03	0.12

"in ppm b data of Pb²⁺ ion. ${}^{c}H_{a}$: NCH₂CH₂"O, H_{b} : NCH₂, H_{c} : NCH₂ for L_{1} , L_{2} and L_{3} . "Ha: NCH₂CH₂"CH₂O, H_{b} : NCH₂, H_{c} : NCH₂ CH₂"O, NCH₂"CH₂O for L_{4}

Figure 3. Calorimetric titration curves of Cd(II) complex with L_2 . [-; 1:1 and +; 2:1 ([L]: [Cd²⁻])mole-ratio)]

dynamic parameters of the L_2 -complex with Cd²⁺ which were obtained by using the computer program, REACTION indicated that log K and enthalpy of reaction are 6.08, -7.28 Kcal/mol (ΔH_1), and 4.78, -4.62 Kcal/mol (ΔH_2) for 1:1 or 2:1 mole-ratio, respectively.

The reaction of this complex is a stepwise type as follows:

$$Cd^{2+} + L_2 \xrightarrow{K_1} CdL_2^{2+} + \Delta H_1, \text{ log } K_1 = \frac{[CdL_2^{2+}]}{[Cd^{2+}][L_2]}$$
$$CdL_2^{2+} + L_2 \xrightarrow{K_2} Cd(L_2)^{2+} + \Delta H_2, \text{ log } K_2 = \frac{[Cd(L_2)^{2+}]}{[CdL_2^{2+}][L_2]}$$

Resulat for determination of equilibrium ratio of the metal ion to macrocyclic ligand, L_2 , was given in Figure 3.

Generally, the ionic radius that matches best the radius of the cavity of the cryptand will form the most stable complex. The correspondance between cavity size and complex stability is more pronounced with the cryptands than coronands. This correspondance between log K values and match of macrocycle cavity and cation diameters was also found for this study. Log K values of post transition metal complexes for L_1 - L_4 cryptands are larger than those of alkali and alkaline earth-cryptates⁷. The ion-dipole interactions with post transition metal ions should be favorable for the combination of the soft donor sites of N and S atoms in macrocycles. The stability of the complexes formed by cryptands L_1 - L_4 . Shows the cryptate effect. The cavity sizes of L_1 - L_3 are smaller than the regular cryptands because of benzene molecule. Thus, it is apparent from the data in Table 1 that the new cryptands (L_1-L_3) form much weaker complexes with all the cations studied than original cryptands (cryptands 22, 222, 221, 211) except for L_2 which formed a stronger complex with Cd2+ than cryptand 22. Because of small cavity size of L_2 as compared to those of cryptand 211 and 22, respectively, it was expected that the L_2 should form more stable complex with smaller cations such as Cd²⁺ ion. However, Ligands L_2 - L_4 , have moderate interactions with Cd²⁺, Pb^{2+} and Hg^{2+} ions in aquous-methanol solutions. Cd^{2+} and Pb^{2+} ions have no significant interaction with L_1 , but Hg^{2+} complex has the strongest stability constant as 2:1 ([L₁]: $[Hg^{2-}]$) mole-ratio. The stability constants of the post transition metal complexes with L_4 were smaller than those with cryptand 222 because the cavity size of L_4 is increased by incorporatig two more methylene unit into the regular cryptand 222. It is interesting that L_2 exhibits selectivity for Cd²⁺ over Pb2+ ion and other transition metal ions. In case of the L_3 and L_4 complexes, the post transition metal ions were expected to be much smaller than the cavity, while in case of complexes with L_1 , Cd^{2+} ion was expected with similar size for the cavity, and in case of complexes with L_1 , the post transition metal ions were expected to be much larger than the cavity size. Furthermore, the size of Hg²⁺ ion was much larger than the ligand cavity. Thus, Hg2+ ion forms complex with L_1 out of the cavity of the macrocycle and the effect of macrocyclic ring size becomes more important.

The complex solutions for determination of proton chemical shifts were prepared by mixing the macrocycles and excess the post transition metal ions, Cd^{2-} and Pb^{2+} , in methanol-d₄ for 24-hours.

The proton chemical shifts for Cd^{2+} and Pb^{2+} complexes with L_1 , L_2 , L_3 , and L_4 and the free ligands were listed in Table 2.

All of the proton resonance lines for the OCH₂ group were nearly constant but those for NCH₂ and NCH₂CH₂O groups adjacent to the nitrogen donor atoms were shifted to downfield direction for all the complexes as compared with the free ligands. In addition, chemical shift-values for the cadmium(II) complexes were also increased with the order of $L_1 < L_3 < L_4 < L_2$. The proton resonance lines were shifted to downfield because the electronegativity of the donor atoms were increased due to the interaction of the post transition metal ion and donor atoms. These proton signals were well

Constant		Reson	ance line					
Complex	ρCH ₂	NCH ₂	NCH ₂ CH ₂	OCH ₂	Aromatic C			-
Ligand(ppm)	56.12	59.64	69.67	70.60	125.62	127.24	129.88	142.07
Cd ²⁺	54.36	57.16	68.92	69.92	123.68	125.18	126.49	143.52
₽b²+	54.76	58.02	69.06	70.21	123.92	126.02	125.71	143.71

Table 3. The ¹³C-chemical shifts of L_2 -Cd²⁺ and Pb²⁺ ion complexes

separated in nice doublet or triplet in the range of 2.69-4.99 ppm for the methylene signals of the Cd^{2+} complexes with L_1-L_3 ligands and 1.75-3.77 ppm for the methylene signals of the complex with L_4 ligand.

The ¹H-NMR spectra of the samples containing L_1 - L_3 and Cd2+ and Pb2+ ions showed that the aromatic signals of the macrocycles were a doublet and triplet. Both of siganls were well resolved in the range of 6.90-7.20 ppm for L_2 and these were well separated from benzene group of free ligands. Thus, the formation of the post transition metal complexes with these macrocycles was mainly due to the interaction of the metal ions and the nitrogen donor atoms rather than that of the oxygen donor atoms, and the interaction of the metals and nitrogen atoms leads to an enhancement of the metal ion affinity, and the aromatic signals of macrocycles were used as a probe for monitoring the complexation. The ¹³C-NMR chemical shifts for complexes with L_2 and the free ligand were listed in Table 3. These signals were mostly shifted to the direction of high magnetic field, whereas the signals of some carbon atoms of the benzene ring were shifted to down magnetic field because of the perturbation of ring current of benzene-molecule that is due to the interaction of the complex ion and counter anion.

Therefore, ¹H and ¹³C-NMR studies indicated that the nitrogen atoms of cryptates have greater affinity to metal ions than the oxygen atoms, and that the planarities of the macrocyclic ring are lost by complexation with the post transition metal ions.

Acknowledgement. This Paper was Supported NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1992.

References

1. Y. Inoue and G. W. Gokel, 'Cation Binding by Macrocycles', 1p, Dekker, New York. NY. U.S.A. (1991).

- A. Bencini, A. Bianchi, E. Garcia-Espana, M. Giusti, S. Mangani, M. Micheloni, P. Orioli, and P. Paoletti, *Inorg. Chem.*, 26, 1243 (1987).
- 3. M. Micheloni, P. Paoletti, and Avacca, J. Chem. Soc. Perkin Trans., 2, 945 (1978).
- M. Bartolini, A. Bianchi, M. Micheloni, and P. Paoletti, J. Chem, Soc., Perkin Trans., 2 1345 (1982).
- H. Y. An, J. S. Bradshaw, and R. M. Izatt, *Chem. Rev.*, 92 (1992).
- J. S. Bradshaw, H-Y An, K. E. Krakowiak., G. Wu, and R. M. Izatt. *Tetrahedron*, 46, 6985 (1990).
- R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, and J. J. Christensen, *Chem. Rev.*, 85 271 (1985).
- 8. Peter Grans, J. Chem. Soc. Dalton Trans., 1195 (1985).
- R. M. Izatt, J. D. Lamb, N. E. Izatt, B. E. Jr. Rossiter, J. J. Christensen, and B. H. Haymore, J. Am. Chem, Soc., 101, 6273 (1979).
- R. D. Hancock and A. E. Martell, Chem. Rev., 89, 1875 (1989).
- E. Krakowiak, J. S. Bradshaw, N. K. Dalley, C. Y. Zhu, Guoliang Yi, J. C. Curtis, Du Li, and R. M. Izatt, J. Org. Chem., 57, 3166 (1992).
- B. Metz, D. Moras, and R. Weiss, J. Chem, Soc., Perkin Trans. II, 423 (1976).
- M. Kodama and E. Kimura, J. Chem. Soc. Dalton Trans., 2335 (1976).
- M. Kodama and E. Kimura, J. Chem. Soc, Dalton Trans., 2356 (1976).
- G. W. Gokel, D. M. Goli, C. Miganiti, and L. Echegoyen, J. Am. Chem. Soc., 105, 6786 (1983).
- 16. H. K. Frendorf, J. Am. Chem. Soc., 93, 2967 (1971).
- P. Gans, A. Sebatini, and A. Vacca, J. Chem. Soc., Dalton Trans., 1195 (1985).
- M. Pietraskiewicz, R. Gassiorouwski, and J. Kozbial, J. Incl. Phenom., 7, 309 (1989).