• Title/Summary/Keyword: Zn-Cr coating

Search Result 15, Processing Time 0.023 seconds

Effect of impurities in bath on surface appearance of electrolytic chromate film (전해크로메이트 피막의 표면외관에 미치는 용액중 불순물의 영향)

  • 김명수;김상헌;김영근
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.6
    • /
    • pp.412-418
    • /
    • 1997
  • The surface appearance of zinc coating chromated electrochemically was investigated with the concentration of impurities in chromating solution. The chromium content and yellowness of chromated film decreased with more than 0.1g/1 Zn in chromating solution, while white ness of it increased slightly. The chromium content and whiteness of chromated film also decreased with more than 0.1g/1 Fe in chromating solution, but the yellowness of it increased. Chromium content, whiteness and yellowness of chromated film decreased slightly with more than 0.5g/1 $Cr^{3+}$<\TEX>. But the chromium content and surface appearance of chromated film are not influenced with less than 1.0g/1 Pb in chromating sloution.

  • PDF

Current Researches on the Protection of Exterior Wood from Weathering (목재의 기상열화 방지에 관한 최근의 연구 동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.449-470
    • /
    • 2018
  • A review of research trends on wood surface protection for exterior use obtained the following conclusions: It has been reported that inorganic compounds such as chrome and copper used as wood preservatives can protect wood from weathering. It has been shown that precoating with hydrophobic substances such as wax and oil, UV absorbers, and HALS (Hindered Amine Light Stabilizers) enhances weathering resistance on the surface of ACQ-treated wood. Opaque coatings of paint/stains and semitransparent stains on the surface of preservative treated wood can increase the synergistic effects on prevention of weathering deterioration. Also the need for repainting periodically for the protection of the preservative treated wood surface has also been suggested. ZnO or $TiO_2$ of fine particles, metal ions such as Co, Cr, Fe, Mn, Ni and Ti, and UV absorbers such as tris-resorcinol triazine derivatives, triazine and benzotriazole were introduced as additives for preventing UV in the transparent coating on wood. Several reports showed that chemical modification such as methylation, acetylation, or alkylations have made some increases the effects of preventing weathering with the increasing weight gain of chemical formulas. In heat-treated wood, there were various contradictory reports on the resistance of weathering, and there were some other reports emphasizing the necessity of painting with UV resistance, which leads to the necessity of more advanced studies.

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution

  • Fatoba, O.S.;Popoola, A.P.I.;Fedotova, T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.

Study of the Optimization and the Depth Profile Using a Flat Type Ion Source in Glow Discharge Mass Spectrometry

  • Woo Jin Chun;Kim, Hyo Jin;Lim Heoung Bin;Moon Dae Won;Lee Kwang Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.620-624
    • /
    • 1992
  • The analytical performance of glow discharge mass spectrometer (GD-MS), using a flat type ion source is discussed. The efficiency of ion extraction was maximized at the distance between anode and cathode of 6 mm. At the operation condition of 4 mA, -1000 volt, and 1 mbar for the source, the optimum voltages for sampler and skimmer were40 volt and -280 volt, respectively. The intensities of Cu, Zn, and Mn were increased as a function of square root of current approximately. Korea standard reference materials (KSRM) were tested for an application study. The detection limits of most elements were obtained in the range of several ppm at the optimized operating condition. The peaks of aluminum and chromium were interfered by those of residual gases. The depth profile of nickel coated copper specimens (3, 5, 10 ${\mu}m$ thickness) were obtained by plotting time versus intensities of Ni and Cr after checking the thickness of nickel coated using a scanning electron microscope (SEM). At this moment, the sputtering rate of 0.2 ${\mu}m/min$ at the optimum operating condition was determined from the slope of the plot of time to the coating thickness. The roughness spectra of specimen's crater after 16 min, discharge were obtained using a Talysuf5m-120 roughness tester as well.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF