• Title/Summary/Keyword: Zn-Al Alloy

Search Result 267, Processing Time 0.042 seconds

A Study on Development of High Strength Al-Zn Based Alloy for Die Casting II: Evaluation of Fluidity and Gravity Casting (고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 II: 중력주조, 유동성평가)

  • Shin, Sang-Soo;Lim, Young-Hoon;Kim, Eok-Soo;Lim, Kyung-Mook
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.531-538
    • /
    • 2012
  • In this study, we evaluated the fluidity of the Al-Zn based alloys which exhibit excellent mechanical properties. We conducted computer simulations of fluid flow using the results of DSC, DTA analysis and Java-based Materials Properties software (J. Mat. Pro). Such computer simulations were then compared with the results obtained from experimental observations. The computer simulation results and the experimental results were very similar in fluidity length. It was found that the fluidity length of Al-Zn alloys is improved by increasing the Zn content while decreasing the solidus temperature of an alloy. In addition, we elucidate the effect of Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al-xZn3Cu0.4Si0.3Fe) x=20, 30, 40, and 45 wt% alloys fabricated by gravity casting.

The effect of thermal treatment of shape memory alloy with the kind of impurity (불순물의 종류에 따른 형상기억합금의 열처리효과)

  • Park, Sung-Kun;Yoo, Pyung-Kil;Jeen, Gwang-Soo;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.500-507
    • /
    • 1997
  • For fine control of operating temperature of shape memory alloy, we investigated the effect of thermal teratment of shape memory alloy with the impurity kind. The martensitic transformation temperature in a Cu-17.25Zn-15Al and Cu-17.25Zn-15Al-1Ag/Fe was measured using electrical resistivity as a function of quenching temperature. Order-disorder phase transition temperatures in parent phase were measured and kind of transition were distinguised by DSC(differential scanning calorimeter) with heating rate variation. And structual changes were studied with XRD. For the Cu-17.25Zn-15Al shape memory alloy, the order-disorder phase transition temperature, $T_{B2}$ and $T_{L21}$ was 809K and 610K and for the Cu-17.25Zn-15Al-1Ag and Cu-17.25Zn-15Al-1Fe specimen $T_{B2}$ and $T_{L21}$ was 794K and 610K, and 803K and 613K, respectively. In all the specimens, quenching from near $T_{B2}$ leads to an increase in martensitic temperature, whereas quenching from near $T_{L21}$ leads to an decrease in martensitic temperature.

  • PDF

Microstructure and Mechanical Properties of Al-5%Mg-1%Mn-x%Zn Alloys (Al-5%Mg-1%Mn-x%Zn합금의 미세조직 및 기계적 성질)

  • Kim, Jeong-Min;Seong, Ki-Dug;Yoo, Jung-Hoon;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2005
  • Effects of Zn and Zr additions on the microstructure and mechanical properties of Al-5%Mg-1%Mn alloys were investigated. As Zn content increased in the Al-Mg-Mn-Zn alloys, the tensile strength and ductility of as-cast alloys rather decreased while the tensile strength of the heat-treated alloys significantly increased mainly due to the precipitation of fine $MgZn_2$ phases. Small amount of Zr was added to the 3%Zn alloy to further enhance the mechanical properties, and it appeared to increase the strength and ductility, especially in as-cast state.

Stress Corrosion Cracking of High Strength Al-Zn-Mg-Cu Aluminum Alloy with Different Compositions (고강도 Al-Zn-Mg-Cu 합금에서 조성에 따른 응력부식균열 특성)

  • Kim, Jun-Tak;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.109-113
    • /
    • 2008
  • High strength 7xxx series Al-Zn-Mg alloy have been investigated for using light weight automotive parts especially for bump back beam. The composition of commercial 7xxx aluminum has the Zn/Mg ratio about 3 and Cu over 2 wt%, but this composition isn't adequate for appling to automotive bump back beam due to its high resistance to extrusion and bad weldability. In this study the Zn/Mg ratio was increased for better extrusion and Cu content was reduced for better welding. With this new composition we investigated the effect of composition on the resistivity against stress corrosion cracking. As the Zn/Mg ratio is increased fracture energy obtained by slow strain rate test was decreased, which means degradation of SCC resistance. While the fracture energy was increased with Cu contents although it is below 1%, which means improvement of SCC resistance. These effects of composition change on the SCC resistivity were identified by observing the fracture surface and crack propagation.

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

Manufacturing of Cu-Zn-Al shape memory alloy using spark plasma sintering (SPS법을 이용한 CuZnAl계 형상기억합금의 제조)

  • 박노진;이인성;조경식;김성진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.172-177
    • /
    • 2002
  • The CuZnAl alloys have some advantages against other shape memory alloys, such as the widely variable transformation temperature, the low cost and easy fabrication. The alloys have been produced mostly by metallurgical methods. Thereby a tendency to large grain sizes is observed, which causes brittle properties of the materials. In order to avoid these deficiencies a special powder metallurgical process, SPS(spark plasma sintering), is applied in the present investigation. The starting materials were the pure (99.9 %) Cu, Zn and Al element powders with different particle size. The relatively fine grained and homogeneous Cu-24.78Zn-9.11Al (at.%) and Cu-13.22Zn-17.24Al (at.%) shape memory alloys were obtained using the powders with size of 75-150 $\mu$m. The average grain size is about 70 $\mu$m and the phases at room temperature are the austenitic and martensitic phase respectively.

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반응고 Al-Zn-Mg 합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Kim, Jeoung-Han;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.405-408
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy..

  • PDF

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반용융 Al-Zn-Mg합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.391-395
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced by using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy.

Influence of Microstructure on Corrosion Property of Mg-Al-Zn Alloy

  • Lee, Jeong Ja;Na, Seung Chan;Yang, Won Seog;Jang, Si Sung;Yoo, Hwang Ryong;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.218-221
    • /
    • 2006
  • Influence of microstructure on the corrosion property of Mg-Al-Zn alloy was investigated using potentiodynamic polarization experiments, galvanic coupling experiments, and scanning electron microscopy in sodium chloride solutions. Pitting was the most common form of attack in chloride solution, and filiform corrosion was also occurred in AZ91D-T4 alloy. On the contrary, filiform attack in the bulk matrix was predominant corrosion form in AZ91D-T6 alloy, and the number and size of pit were decreased than those of AZ91D-T4 alloy. Galvanic coupling effect between $Mg_{17}Al_{12}$ and matrix was existed, but the propagation of galvanic corrosion was localized only near the $Mg_{17}Al_{12}$ phase in AZ91D-6T alloy. The corrosion resistance of Mg-Al matrix increased with decreasing Al content in the matrix. And, it could be regarded that Al content in the matrix is decreased by precipitation of $Mg_{17}Al_{12}$ during the aging treatment and it decreases the anodic reaction rate of the matrix and galvanic effect in AZ91D-T6 alloy. It could be considered that the composition and microstructure of surface protective layer would be varied by precipitation of $Mg_{17}Al_{12}$ and subsequent decreasing of Al content in the matrix. And it would contribute the corrosion resistance of AZ91D-T6 aging alloy.