• 제목/요약/키워드: Zirconia Powder

Search Result 198, Processing Time 0.062 seconds

Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering (Hydroxyapatite 분위기 소결을 통한 지르코니아 표면 경도 강화)

  • Choi, Min-Geun;Lim, Ji-Ho;Kong, Kyu-Hwan;Jeong, Dae-Yong;Lee, Wonjoo;Li, Long-Hao;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.677-681
    • /
    • 2014
  • To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% $Y_2O_3$ doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature ($1400^{\circ}C$), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.

Effect of addition of dispersant on the physical properties of recycled zirconia (분산제의 첨가가 재활용 지르코니아의 물성에 미치는 영향)

  • Seo, Jeong-Il;Park, Won-Uk;Kim, Hae-Gyu
    • Journal of Technologic Dentistry
    • /
    • v.40 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Purpose: When casting of ceramics, proper amount of deflocculant was added for disperse the particles in slip. In this study, examined the optimum amount of APMA(ammonium polymethaacrylate) water as deflocculant for casting the zirconia. Methods: The 100 g of zirconia powder were ball milled with 300 g zirconia ball, 90 g of distilled water, and APMA water in polyethylene pot for 24 hours. The amount of APMA water were added as deflocculant from 0.5 to 0.9 g at an intervals of 0.1 g. The viscosity of slip with no deflocculant showed 1362c.p. and the minimum viscosity with 580c.p. obtained when the slip contained 0.7% of deflocculant. Bar type specimens were casted with plaster mold and biscuit fired at $1100^{\circ}C$ for 1 hours. Biscuit fired specimens were finished with $60mm(L){\times}14mm(W){\times}10mm(H) bar$. Finished specimens were 2nd fired at $1500^{\circ}C$ for 1 hour. Results: Regardless the addition of deflocculant, all 2nd fired specimens showed 0% of apparent porosity and water absorption. The specimens with no deflocculant showed 24% of drying shrinkage and 27.4% firing shrinkage. On the other hand, The specimens with deflocculant showed 17.4% of drying shrinkage and 17.6% firing shrinkage regardless the amount of deflocculant. The maximum bulk density with $6.09g/cm^3$ obtained when the specimens casted with 0.7~0.9% of deflocculant contained slips. Bend strength of specimen with no deflocculant showed 680 MPa and the maximum bend strength with 814 MPa obtained when the specimen casted with 0.7% of diflocculant contained slip. Conclusion : It was found that the particle shape of the powder according to the dispersing agent is added, the particle size, sintering temperature and affect the particle size distribution, sintering time, sintering atmosphere, such a great influence on the sintering.

Effects of Mechanically Activated Milling and Calcination Process on the Phase Stability and Particle Morphology of Monoclinic Zirconia Synthesized by Hydrolysis of ZrOCl2 Solution

  • Lee, Young-Geun;Ur, Soon-Chul;Mahmud, Iqbal;Yoon, Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.543-549
    • /
    • 2013
  • The purpose of this paper was to investigate the effect of a high-energy milling (HEM) process on the particle morphology and the correlation between a thermal treatment and tetragonal/monoclinic nanostructured zirconia powders obtained by a precipitation process. To eliminate chloride residue ions from hydrous zirconia, a modified washing method was used. It was found that the used washing method was effective in removing the chloride from the precipitated gel. In order to investigate the effect of a pre-milling process on the particle morphology of the precipitate, dried $Zr(OH)_4$ was milled using a HEM machine with distilled water. The particle size of the $Zr(OH)_4$ powder exposed to HEM reduced to 100~150 nm, whereas that of fresh $Zr(OH)_4$ powder without a pre-milling process had a large and irregular size of 100 nm~1.5 ${\mu}m$. Additionally, modified heat treatment process was proposed to achieve nano-sized zirconia having a pure monoclinic phase. It was evident that two-step calcining process was effective in perfectly eliminating the tetragonal phase, having a small average particle of ~100 nm with good uniformity compared to the sample calcined by a single-step process, showing a large average particle size of ~300 nm with an irregular particle shape and a broad particle size distribution. The modified method is considered to be a promising process for nano-sized zirconia having a fully monoclinic phase.

Biaxial flexural strength of bilayered zirconia using various veneering ceramics

  • Chantranikul, Natravee;Salimee, Prarom
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.358-367
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS. Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (${\alpha}$=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. RESULTS. It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. CONCLUSION. From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength.

Effect of Reaction Conditions on the Particle Properties for Synthesis of Stabilized Zirconia by Modified Oxalate Method

  • Park, Hyun-wook;Lee, Young Jin;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Hae Jin;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.529-534
    • /
    • 2016
  • Nanocrystalline powder of zirconia stabilized with 8 mol% yttria (YSZ) has been synthesized through oxalate process using $ZrOCl_2{\cdot}8H_2O$ and $Y(NO_3)_3{\cdot}6H_2O$ as starting materials. Understanding of the characteristic changes of YSZ powder as a function of processing conditions is crucial in developing dense and porous microstructures required for fuel cell applications. In this research, microstructure change, surface area, particle shape and particle size were measured as a function of different processing conditions such as calcination temperature, stirring speed and concentration of starting materials. The resultant crystallite sizes were calculated by XRD-LB (X-Ray Diffraction Line-Broadening) method, BET method, and morphology of the crystal was observed in TEM and FE-SEM. The TEM examination showed that the powder synthesized with 0.7 M of YSZ concentration had a spherical morphology with sizes ranging from 20 to 40 nm. However, the powder was gradually aggregated above 1.0 M of YSZ concentration with the aggregation being intensified as the YSZ concentration was increased.

Spray Drying of Zirconia/Alumina Composite Powder Using PVP as a Binder (PVP 결합제를 이용한 지르코니아/알루미나 복합분말의 분무건조)

  • Shim, Hyung-Bo;Moon, Joo-Ho;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.446-451
    • /
    • 2002
  • Zirconia/alumina mixture powder was spray-dried various degree of dispersion, type of dispersants and powder content in the slurry. The quality of the granule was determined by observation of the granule shapes after spray drying and fracture of intergranular boundaries during pressing. Defect-free granules were obtained from the powders that formed weak flocs in the slurry. The granules, spray-dried from the slurry containing 32.5 vol% powder mixture and PVP as binder, were fractured completely during shaping and the sintered specimens showed a density of 99.7% and a flexural strength of 850 MPa.

Effects of Particle Size of Alumina on Densification Behavior in ZTA (ZTA 제조시 알루미나 입자크기가 치밀화 거동에 미치는 영향)

  • Chae, Jihoon;Cho, Bumrae
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.250-254
    • /
    • 2013
  • In order to increase the toughness of ZTA(zirconia toughened alumina) ceramics, the present study focused on rearrangement and densification of particles according to the particle size of the parent material. When rough alumina was used for production of ZTA, densification behavior was observed in the specimen sintered at a temperature over $1550^{\circ}C$. However, it was found that the densification behavior was occurred in the specimen sintered at $1450^{\circ}C$ when fine alumina powder was used. High relative density exceeding 98% was obtained when fine alumina powder was mixed with 15 wt% of 3Y-TZP and sintered at $1600^{\circ}C$. Also, a hardness of 1820.2 Hv was obtained when a specimen containing 10 wt% of 3Y-TZP was sintered at $1600^{\circ}C$. In the case of 3Y-TZP containing rough alumina powder that had been sintered the hardness value was around 1720.3 Hv. It was predicted that an improved toughening effect in ZTA could be achieved by using finer alumina powder as the parent material.

Sinterability of Low-Cost 3Y-ZrO2 Powder and Mechanical Properties of the Sintered Body

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Jung, Seung-Hwa;Kim, Jae-Yuk;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.285-291
    • /
    • 2017
  • This study investigated the effects of grain size and phase constitution on the mechanical properties of $3Y-ZrO_2$ by varying the sintering conditions. The raw powder prepared by a low-cost wet milling using the coarse solid oxide powders was sintered by both pressureless sintering and hot-pressing, respectively. As increasing holding time at $1450^{\circ}C$ for pressureless sintering, it promoted the microstructural coarsening of matrix grains and the phase transformation to tetragonal phase, whereas the bimodal microstructure embedded with abnormal $cubic-ZrO_2$ grains was observed regardless of sintering time. On the other hand, the specimens hot-pressed at $1300^{\circ}C$ for 2 h reached ~ 97% of relative density with homogeneous fine microstructure and mixed phase constitution. It was found that the proportion of untransformed monoclinic zirconia had the most adverse effect on the biaxial strength compared to the impacts of grain size and density. The pressureless sintering of the low-cost powder for prolonged sintering time to 8 h led to a decent combination of mechanical properties ($H_V=13.2GPa$, $K_{IC}=8.16MPa{\cdot}m^{1/2}$, ${\sigma}=981MPa$).

Preparation of Monoclinic Zirconia Sintered at Low Temperature from Homogeneous Dispersed Suspension (균질하게 분산된 현탁액으로부터 저온소결 단사정 지르코니아의 제조)

  • Moon, Gi-Dong;Lee, Jong-Kook;Kim, Duk-Jun;Kim, Hwan
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.829-834
    • /
    • 1995
  • Homogeneously dispersed zirconia suspension was prepared by addition of 500ppm polyvinyl alcohol (PVA). The powder compact by centrifugal casting from this suspension shows more uniform packing, higher packing density, and smaller pore size than that of suspension without PVA. On using this powder compacts, sintered monocllnic zirconia with the relative density of 98% could be obtained at low temperature of 125$0^{\circ}C$.

  • PDF

Fabrication and Characteristics of YSZ-TiC Ceramics Composite by Using Hot Pressing (고온가압소결을 이용한 YSZ-TiC 세라믹스 복합체의 제조와 특성)

  • Choi, Jae-Hyung;Choi, Ji-Young;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.381-388
    • /
    • 2021
  • Zirconia has excellent mechanical properties, such as high fracture toughness, wear resistance, and flexural strength, which make it a candidate for application in bead mills as milling media as well as a variety of components. In addition, enhanced mechanical properties can be attained by adding oxide or non-oxide dispersing particles to zirconia ceramics. In this study, the densification and mechanical properties of YSZ-TiC ceramic composites with different TiC contents and sintering temperatures are investigated. YSZ - x vol.% TiC (x=10, 20, 30) system is selected as compositions of interest. The mixed powders are sintered using hot pressing (HP) at different temperatures of 1300, 1400, and 1500℃. The densification behavior and mechanical properties of sintered ceramics, such as hardness and fracture toughness, are examined.