• Title/Summary/Keyword: Zirconia Powder

Search Result 198, Processing Time 0.029 seconds

Synthesis of Monodispersed Zirconia Powder by Hydrolysis of Zirconium Alkoxides (알콕사이드의 가수분해법에 의한 단분산 지르코니아 분체의 합성)

  • Rhee Jhun;Jo, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.167-175
    • /
    • 1991
  • In synthesizing hydrated zirconia powder by hydrolysis of Zr-alkoxides using ethanol as mutual solvent, three experimental parameters, namely, concentration of alkoxides and hydrolysis water and addition rate of hydrolysis water were varied systematically. Spherical, monodispersed, nonagglomerated and submicrometer sized powders were prepared at 0.3 M of Zr(n-OPr)4 and 0.05M of Zr(n-OBu)4 with wide ranges of hydrolysis water conditions i.e. 0.5-2.0M concentration and 1-20ml/min addition rate. During the hydrolsis, careful attention have to be paid to maintain homogeneous reaction by controlling the agitation of the reactant and the addition of the hydrolysis water. For more improved condition of monodispersity it was found that the key point is to shorten the self-nucleation time within several seconds as rapid as possible. In both alkoxides system, with higher concentration of alkoxide and hydrolysis water and with slow addition rate of hydrolysis water, hydrated zirconia powders synthesized showed tendency to fall in worse powder conditions.

  • PDF

Densification behavior of ceramic powder under cold compaction (냉간압축 하에서 세락믹 분말의 치밀화 거동)

  • Choi, Seung-Wan;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.924-938
    • /
    • 1998
  • Densification behavior of ceramic powder under cold compaction was investigated. Experimental data were obtained for zirconia powder and alumina powder under triaxial compression with various loading conditions. A special form of the Cap model was proposed from experimental data under triaxial compression for a yield function of ceramic powder. The proposed yield function was inplemented into a finite element program (ABAQUS) to study densification behaviors of zirconia and alumina powders under die compaction. The effect of friction between the powder and die wall was also investigated. Density distributions of powder compacts were measured and compared with finite element results.

Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics (기공형성제 크기와 함량이 다공질 지르코니아 세라믹스의 가공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Using zirconia and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads, macroporous zirconia ceramics were fabricated by a simple pressing method. Effects of template size and content on microstructure, porosity, and flexural and compressive strengths were investigated in the processing of the macroporous zirconia ceramics. Three different sizes of microbeads (8, 20, and $50{\mu}m$) were used as a template for fabricating the macroporous ceramics. The porosity increased with increasing the template size at the same template content. The flexural and compressive strengths were primarily influenced by the porosity rather than the template size. However, the strengths increased with decreasing the template size at the same porosity. By controlling the template size and content, it was possible to produce macroporous zirconia ceramics with porosities ranging from 58% to 75%. Typical flexural and compressive strength values at 60% porosity were ${\sim}30\;MPa$ and ${\sim}75\;MPa$, respectively.

Porosity Control of Porous Zirconia Ceramics (다공질 지르코니아 세라믹스의 기공율 제어)

  • Chae, Su-Ho;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.65-68
    • /
    • 2008
  • A simple pressing process using zirconia and microbead for fabricating porous zirconia ceramics is demonstrated. Effects of microbead content and sintering temperature on microstructure, porosity, compressive and flexural strengths were investigated in the processing of porous zirconia ceramics using microbead as a pore former. By controlling the microbead content and the sintering temperature, it was possible to produce porous zirconia ceramics with porosities ranging from 43% to 70%. Typical compressive and flexural strength values at ${\sim}50%$ porosity were ${\sim}150\;MPa$ and ${\sim}35\;MPa$, respectively.

Sintering Behavior and Mechanical Properties of Mullite-Zirconia Composites (Mullite-Zirconia 복합체의 소결거동 및 기계적 성질)

  • 박상엽
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.9-17
    • /
    • 1997
  • The mullite-zirconia composites were prepared by the pressureless sintering with addition of 10~20 vol% ZrO$_2$(TZ3Y) in the fused mullite and sol-gel mullite matrix. The densification rate of sol-gel mullite was higher than that of fused mullite, and the addition of ZrO$_2$(TZ3Y) was effective on the densification of fused mullite. The enhancement of densification and anisotropic growth of mullite in ZrO$_2$added specimen can be explained by the solid solution effect of $Zr^{+4}$ ion in mullite. Both mechanical strength and fracture toughness of mullite-zirconia composite were enhanced compared to those of mullite. The enhancement of mechanical properties is attributed to the hinderance of grain growth and the combined toughening effects of tetra-mono phase transformation and crack deflection due to the residual stress between mullite/ZrO$_2$.

  • PDF

Effect of Organic Additives on Microstructure and Green Density of Zirconia Granules Using Water Solvent (유기첨가제가 수계에서 제조된 지르코니아 과립의 미세구조 및 성형밀도에 미치는 영향)

  • Jung, Ji-Hwan;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • Spherical-type zirconia granules are successfully fabricated by a spray-drying process using a water solvent slurry, and the change in the green density of the granule powder compacts is examined according to the organic polymers used. Two organic binders, polyvinyl alcohol (PVA) and 2-hydroxyethyl methacrylate (HEMA), which are dissolved in a water solvent and have different degrees of polymerization, are applied to the slurry with a plasticizer (polyethylene glycol). The granules employing a binder with a higher degree of polymerization (PVA) are not broken under a uniaxial press; consequently, they exhibit a poor green density of $2.4g/cm^3$. In contrast, the granule powder compacts employing a binder with a lower degree of polymerization (HEMA) show a higher density of $2.6g/cm^3$ with an increase in plasticizer content. The packing behavior of the granule powders for each organic polymer system is studied by examining the microstructure of the fracture surface at different applied pressures.

Phase Stability and isothermal Phase Transformation of the Yttria-Stabilized Zirconia Powder Prepared from Alkoxide Hydrolysis (알코옥시드 가수분해법으로 합성한 이트리아 안정화 지르코니아 분말의 상안정성 및 등온상전이 특성)

  • Lee, Jong-Kook;Kim, Young-Jeong;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.637-644
    • /
    • 1996
  • Phase stability and isothermal phase transformation during gaging at 25$0^{\circ}C$ were investigated in yttria stabilized zirconia powders prepared from hydrolysis of zirconium isopropoxide. The stability of tetragonal phase at room temperature in zirconia powder was decreased with calcination temperature but increased with the addition of yttria content. During aging at 25$0^{\circ}C$ in humid atmosphere isothermal phase transformation occurred in tetragonal zirconia powder stabilized by constraint effect not by alloying effect and grain size effect. Many twins and microcrackings were found in transformed monomlinic zirconia particles.

  • PDF

Synthesis of Mullite-Zirconia Composites from Kaolin by Gel Coating (Gel Coating법에 의한 Kaolin으로부터 Mullite-Zirconia 복합체의 합성)

  • 김세훈;김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.497-504
    • /
    • 2000
  • In this study, mullite-zirconia comosite was fabricated by adding ZrOCl2.8H2O using of boehmite gel coating to Hadong kaolin (pink A grade) in order to enhance strength of the mullite specimens. The influence of ZrOCl2.8H2O content and fireing temperature on the crystall phase, microstructure, bulk density, strength of the specimens was investigated. Mullite-zirconia composite was produced in the process of coating zirconia to mullite powder synthesized thereafter and mixing simultaneously of starting materials with boehmite-zirconia gel. Maximum strength with in this study was 251 sintered at 1$600^{\circ}C$ for 2h. Bulk density and strength of the composite with zirconia coated mullite was higher than simultaneous on mixture of starting materials.

  • PDF

Effect of Heat Treatment of powder on the Tribological Behavior of the Plasma Sprayed Zirconia Coating (분말 열처리가 지르코니아 용사코팅층의 마모특성에 미치는 영향)

  • 신종한;임대순;안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.298-303
    • /
    • 2000
  • The 3 mol% yttria stabilized zirconia (3-Y PSZ) powder was heat treated at 50 0$^{\circ}C$ to evaporate the polymer binder and stabilize the tetragonal phase. The wear experiments were carried out on a ring-on-plate type reciprocating wear tester at selected temperatures with in the range room temperature to 600$^{\circ}C$ The results show that the heat treatment of powder decreases the wear rate due to the reduction of microcracks and pores in coatings and the stabilization of the tetragonal phase. Powder heat treatment enhanced the quality of the coating layer by removing remnant gases during coating process and the powder heat treatment at which tetragonal phase is stable diminished phase ratio of monoclinic. These two effects improved wear resistance characters.

  • PDF