• Title/Summary/Keyword: Zirconia Ceramic

Search Result 629, Processing Time 0.023 seconds

A Syudy on the High Temprerties of the 5Layer Functionally Gradient Thermal Barrier Coating (5층열장벽 피막의 고온 물성에 관한연구)

  • Han, J. C.;Jung, C.;Song, Y. S.;Yoon, J. K.;Lo, B. H.;Lee, K. H.
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.12-23
    • /
    • 1998
  • The Thermal Barrier Coating(TBC) has been used to improve the heat barrier and tribological properties of the aircraft engine and the automobile engine in high temperature. Especially, the high temperature tribological propertied of the cylinder haed and the piston crown of diesel engine was emphasized. Therefore, the purpose of this work was to evaluate the microstructure, tribological propeer in high tempearmal shock resistance and bonding strength of five layer functionally gradient TBC for the applications. The five layerwere composed with 100% ceramic insulating later, 75(ceramic):25 (metal) layer, 50:50 layer, 25:75 layer and 100% metal bonding layer to redude the thermal stress. the YSL and MSL poweders were the insulation ceramics powers. The NiCrAly, Inconel625 and SUS powders were the bonding and mixingg powders for plasma spray process. According to the result of high temperature wear test, the wera resistance of YSZ/NiCrAlY siytem was most out standing at 600 and $800^{\circ}C$. At $400^{\circ}C$, the wear resistance of YSZ/Inconel system was better than others. Wear volume at other temperature because of the low temperature degration of zirconia. The thermal shock mechanism of 5 later is the vertical crack gegration in insulating layer. this means that the initial cracks were generated in the top layer, and then developed into the composite layers during thermal shock test. Finally, these cracks werereached to the interface of coating and substrate and also, these vertioal cracks join with the horizontal cracks of the each layers. The bonding strength of YSZ/NiCrAlY and YSZ/Inconel 5 layer system is better than other 5layer systems. The theramal shock resistance of thermal barrier coating s with 5 layer system is better than that of 3 layers and 2 layers.

  • PDF

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.

Phase Stability and Physical Properties of $ZrO_2$ doped with $Y_2O_3$ and $Nb_2O_5$ ($Y_2O_3$$Nb_2O_5$가 첨가된 $ZrO_2$의 상 안정성 및 물리적 성질)

  • 이득용;김대준;조경식;장주웅
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.645-651
    • /
    • 1997
  • Tetragonal zirconia polycrystals (TZPs) doped with $Y_{2}O_{3}$ and $Nb_{2}O_{5}$ were prepared by the conventional sintering to enhance fracture toughness and phase stability of TZPs without controlling the grain size. TZP composites were obtained by adding the transformable TZP to the non-transformable TZP in wt%. The monolithic tetragonal $ZrO_2$, same as the composite composition containing 15 wt% transformable TZP, sintered at $1550^{\circ}C$ for 10h in air, exhibited the fracture toughness of 9$MPam^{1/2}$ and no low-and high-temperature degradation at temperatures in the range of 220 to $1000^{\circ}C$ for 100h in air. The corresponding single composition was 90.24 mol% $ZrO_2$-5.31 mol% $Y_{2}O_{3}$-4.75 mol% $Nb_{2}O_{5}$. The microstructure observation revealed that the t-$ZrO_2$ grains grew grandually with sintering time and no microcraking and twinning were observed.

  • PDF

Preparation of NASIglasses by Sol-Gel Process (솔-젤법에 의한 NASIglass의 제조)

  • 김희주;강은태;김종옥
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1357-1368
    • /
    • 1995
  • Nasigels of composition Na0.75Zr2PSi2O12 and Na3Zr2PSi2O12 have been synthesized by the sol-gel technique using metal alkoxide precursors. The monolithic dry gels of Na0.75Zr2PSi2O12 with no crack have been prepared by the control of the shrinkage rte, but gels of Na3Zr2PSi2O12 were impossible to prepare without cracking. The gels treated up to 80$0^{\circ}C$ led to the formtion of glass but the glasses were converted to the crystalline phases at above this temperature. Crystaline phases precipitated from the Na0.75Zr2PSi2O12 glass were NASICON-like phase, Na2Si2O5, and free Zirconia. Phase that precipitated from the Na3Zr2PSi2O12 was only rhombohedral NASICON. For Na0.75Zr2PSi2O12 gels, framework of PO4 tetrahedra and SiO4(PO4) tetrahedra formed at low temperature but changed to that of SiO4 and SiO4(PO4) tetrahedras as it were crystallized. In the case of Na3Zr2PSi2O12 gel, framework of isolated PO4 and SiO4 tetrahedras formed at low temperature but changed to SiO4(PO4) tetrahedra framework which usually formed in the NASICON crystal after crystallization at high temperature. The gels treated up to 80$0^{\circ}C$ contained the residual water. The ionic conduction was attributed to the motion of proton and Na+ ion at low (up to 150~20$0^{\circ}C$) and high temperatures, respectively. As the temperature of heat treatment increased, ionic conductivity gradaully increased with the extent of precipitation of crystalline phase.

  • PDF

Synthesis of Electrolyte Films for Low-Temperature Solid Oxide Fuel Cells by Sol-Gel Coating and Their Characteristics (졸-겔 코팅에 의한 저온형 고체산화물 연료저지용 전해질막의 합성 및 특성)

  • 현상훈;김승구;장운석
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.391-402
    • /
    • 1999
  • Characteristics of composite electrolytes which were prepared by coating a thin film of YSZ (yttria sta-bilized zirconia : (ZrO2)0.92 (Y2O3)0.08) on YDC (yttria doped ceria : Ce0.8Y0.2O1.9) with mixed conductivity have been investigated in order to develop the low-temperature solid oxide fuel cell. The thickness (t) of spin-coated YSZ thin films after the heat-treatment at 600$^{\circ}C$ was increased proportionally to the sol con-centrations (C) while the decrease in its thickness with the spin rate ($\omega$) could be expressed in the e-quation of ln t=9.49-0.53 ln $\omega$(0.99mol//s sol conc.) When the sol concentration and the spin rate being less than 0.99 mol/l and higher than 1000 rpm respectively reliable YSZ/YDC composite electrolytes could be obtained by multi-coating although several micro-cracks were observed in singly coated YSZ film surfaces. The dense YSZ film with a 1$\mu\textrm{m}$ thickness was prepared by coating of 0.99 mol/l YSZ sol five-times at 2000 rpm followed by heat-treatment at 1400$^{\circ}C$ for 2h, The adhesion between YSZ film and YDC substrate was found to be very good. The open circuit voltages of H2/O2 single cell with YSZ/YDC composite electrolytes were 0.79∼0.82 V at 800$^{\circ}C$ and 0.75∼0.77V at 900$^{\circ}C$ The open circuit voltage was inversely proportioned to the thickness ratio of YSZ thin film (1$\mu\textrm{m}$) to YDC substrate(0.28-2.22 mm)

  • PDF

Preparation of Electrolyte Thin Film for Anode Support Type Solid Oxide Fuel Cells by Electrophoretic Deposition and Dip-Coating (전착법과 담금법에 의한 음극지지형 SOFC 지르코니아 전해질막 제조)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.791-798
    • /
    • 1999
  • The preparation method of yttria-stabilized zirconia(YSZ) thin film for an anode support type solid oxide fuel cell(SOFC) by electrophoretic deposition(EPD) and dip-coating was studied. And the difference in both preparation method was investigated through basic understanding of processing parameters which may significantly affect weight microstruxcture and defect of film. In dip-coating the thickness of film increased with time until 30 s and then the weight of film decreased with time due to particle falling off from the coagulated film. In EPD although the weight of film increased with time and applied constant-current sagging of the film was observed when the applied current was less that 0.035 mA/$cm^2$ and more than 120 s. Since YSZ thin film by EPD on porous substrate was dense smooth and homogeneous it was expected to be suitable for the electrolyte of an anode support type SOFC.

  • PDF

Electrochemical Corrosion Properties of YSZ Coated AA1050 Aluminium Alloys Prepared by Aerosol Deposition (에어로졸 증착법에 의한 YSZ 코팅된 AA1050 알루미늄 합금의 전기화학적 부식 특성)

  • Ryu, Hyun-Sam;Lim, Tae-Seop;Ryu, Jung-Ho;Park, Dong-Soo;Hong, Seong-Hyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.439-446
    • /
    • 2011
  • Yttria stabilized zirconia (YSZ) coating was formed on AA1050 Al alloys by aerosol deposition (AD), and its electrochemical corrosion properties were investigated in 3.5 wt% NaCl and 0.5M $H_2SO_4$ solutions. The crack-free, dense, and ~5 ${\mu}m$ thick YSZ coating was successfully obtained by AD. The as-deposited coating was composed of cubic-YSZ nanocrystallites of ~10 nm size. The potentiodynamic test indicated that the YSZ coated Al alloy had much lower corrosion current densities (2 nA/$cm^2$) by comparison to uncoated sample and exhibited a passive behavior in anodic branch. Particularly, a pitting breakdown potential could not be identified in $H_2SO_4$. EIS tests revealed that the impedance of YSZ coated sample was ${\sim}10^6{\Omega}cm^2$ in NaCl and ${\sim}10^7{\Omega}cm^2$ in $H_2SO_4$, which was about 3 or 4 orders of magnitude higher than that of uncoated sample. Consequently, the corrosion resistance of Al alloy had been significantly enhanced by the YSZ coating.

Y2O3-stabilized ZrO2, Ni, and graphene-added Mg by reactive mechanical grinding processing for hydrogen storage and comparison with Ni and Fe2O3 or MnO-added Mg

  • Song, Myoung Youp;Choi, Eunho;Kwak, Young Jun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.609-616
    • /
    • 2019
  • The optimum powder to ball ratio was examined, which is one of the important conditions in reactive mechanical grinding processing. Yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ), Ni, and graphene were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Samples with a composition of 92.5 wt% Mg + 2.5 wt% YSZ + 2.5 wt% Ni + 2.5 wt% graphene (designated as Mg-2.5YSZ-2.5Ni-2.5graphene) were prepared by grinding in hydrogen atmosphere. Mg-2.5YSZ-2.5Ni-2.5graphene had a high effective hydrogen-storage capacity of almost 7 wt% (6.85 wt%) at 623 K in 12 bar H2 at the second cycle (n = 2). Mg-2.5YSZ-2.5Ni-2.5graphene contained Mg2Ni phase after hydriding-dehydriding cycling. Mg-2.5YSZ-2.5Ni-2.5graphene had a larger quantity of hydrogen absorbed for 60 min, Ha (60 min), than Mg-2.5Ni-2.5graphene and Mg-2.5graphene. The addition of YSZ also increased the initial dehydriding rate and the quantity of hydrogen released for 60 min, Hd (60 min), compared with those of Mg-2.5Ni-2.5graphene. Y2O3-stabilized ZrO2, Ni, and graphene-added Mg had a higher initial hydriding rate and a larger Ha (60 min) than Fe2O3, MnO, or Ni and Fe2O3-added Mg at n = 1.

Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent (비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성)

  • Na, Ho Seong;Park, Min-Gyeong;Lim, Hyung Mi;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.

Fabrication and Property Evaluation of Tubular Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 관형 SOFC의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.562-566
    • /
    • 2012
  • A novel design of tubular segmented-in-series(SIS) solid oxide fuel cell (SOFC) sub module was presented in this paper. The tubular ceramic support was fabricated by the extrusion technique. The NiO-YSZ anode and the yttria-stabilized zirconia (YSZ) electrolyte were deposited onto the ceramic support by dip coating method. After sintering at $1350^{\circ}C$ for 5 h, a dense and crack-free YSZ film was successfully fabricated. Also, the multi-layered cathode composed of LSM-YSZ composite, LSM and LSCF were coated onto the sintered ceramic support by dip coating method and sintered at $1150^{\circ}C$. The performance of the tubular SIS SOFC cell and sub module electrically connected by the Ag-glass interconnect was measured and analysed with different fuel flow and operating temperature.