• Title/Summary/Keyword: Zircon($ZrSiO_4$)

Search Result 25, Processing Time 0.022 seconds

Sintering Behavior of Zircon with SiO2 (Silica가 첨가된 지르콘 소결거동)

  • Lee, Keun-Bong;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.604-609
    • /
    • 2008
  • The sintering behavior of zircon with silica was investigated. Zircon with 5 vol% of sedimentation $SiO_2$ resulted in the apparent density of $4.45\;g/cm^3$, the diametral tensile strength of $12.125\;kgf/cm^2$, and the micro Vickers hardness of 1283 HV. The dissociation temperature and mechanical characteristics of the $ZrSiO_4$ were changed with different kinds of $SiO_2$. $SiO_2$ addition prevented dissociation of $ZrSiO_4$. Zircon with 5 vol% of sedimentation $SiO_2$ and with 5 vol% of fused $SiO_2$ resulted in increased diametral tensile strength and increased micro Vickers hardness by suppression of $ZrSiO_4$ dissociation and low temperature liquid $SiO_2$ formation. Zircon with fumed $SiO_2$ and quartz $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of cristobalite and quartz phase formation and high temperature liquid $SiO_2$ formation. Zircon with 10 vol% of $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of weak particle coupling due to excess formation of liquid $SiO_2$.

Effect of Adding SiO2 and Al2O3 on Mechanical Properties of Zircon (SiO2와 Al2O3 첨가가 지르콘의 기계적 특성에 미치는 영향)

  • Cho, Bum-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.220-224
    • /
    • 2011
  • Zircon has excellent thermal, chemical, and mechanical properties, but it is hard to make a dense sintered product because of dissociation during the sintering process. This study analyzes how the addition of $SiO_2$ and $Al_2O_3$ affects the mechanical properties of sintered zircon, particularly in regards to reducing the thermal dissociation and improving the mechanical properties of $ZrSiO_4$. Zircon specimens containing different amounts of $SiO_2$ and $Al_2O_3$ were prepared and sintered to observe how the mechanical properties of $ZrSiO_4$ changed according to the differing amount of $SiO_2$ and $Al_2O_3$. The $ZrSiO_4$ that was used for the starting material was ground by ball mill to an average particle size of 3 ${\mu}m$. The $SiO_2$ and $Al_2O_3$ that was used for additives were ground to an average particle size of 3 ${\mu}m$ and 0.5 ${\mu}m$, respectively. Adding $SiO_2$ resulted in transformation in the liquid phase at high temperatures, which had little effect on suppressing the thermal dissociation but enhanced the mechanical properties of $ZrSiO_4$. When $Al_2O_3$ was added, the mechanical properties of $ZrSiO_4$ decreased due to the formation of pores and abnormal grains in the microstructure of the sintered zircon.

Effects of SiO2 and 3Y-TZP on Mechanical Properties of Zircon (SiO2와 3Y-TZP 첨가가 지르콘의 기계적 물성에 미치는 영향)

  • Jang, Ho Su;Cho, Bum Rae
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.182-186
    • /
    • 2016
  • Zircon, having excellent thermal, chemical, and mechanical properties, is utilized in refractory materials, electronic materials, chemical machines, structural materials, etc. However, zircon generally shows thermal dissociation to zirconia($ZrO_2$) and silica($SiO_2$) around the sintering temperature of $1540^{\circ}C$, and when zircon particles are small and impurities are present, thermal dissociation is known to occur at around $1100^{\circ}C$. This reduces the mechanical properties of $ZrSiO_4$. In this research, the effect of adding $SiO_2$ and 3Y-TZP to $ZrSiO_4$ has been studied in order to suppress dissociation and improve the mechanical properties. Addition of $SiO_2$ suppressed the dissociation of $ZrSiO_4$ at lower temperatures. It also enabled optimum packing between the particles, resulting in a dense microstructure and good mechanical properties. When 3Y-TZP was added, recombination with the dissociated $SiO_2$ resulted in good mechanical properties by suppressing the generation of pores and the densification of the microstructure.

A Study on Stabilized CdS-CdSe Red Stain A Study on Zircon Cadmium Sulphoselenide Stain (안정화 CdS-CdSe계 채료에 관한 연구 제2보$ ZrSiO_4-Cd(S_xS_{1-x})$ 의 합성)

  • 이종근;김종옥
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.4
    • /
    • pp.23-26
    • /
    • 1986
  • The synthetic conditions of $ ZrSiO_4-Cd(S_xS_{1-x})$ stains from CdS, Se, $SiO_2$ , 4ZrO_2$ and Lif were investigated and the colors were examined. Colors of the stains prepared were yellow orange red pink ruby and violet in relation to both the content of CdS-Se in $ZrSiO_4$ and firing temperature. Colors of these series stains were thermally stabilized probably by the structural stability of zirconium silicate. Furthermore by the result of X-ray diffraction analysis it is assumed that color of the zircon cadmium sulphoselenide $ ZrSiO_4-Cd(S_xS_{1-x})$ stain is developed by neither the coloring ions in $ZrSiO_4$ lattice nor the solid solution of $ZrSiO_4$ and $Cd(S_xS_{1-x})$ but by the small crystals of $Cd(S_xS_{1-x})$ being occluded by the zirconium silicate during sintering process.

  • PDF

Sintering Characteristics of Zircon Nanopowders Fabricated by High Energy Milling Process (고 에너지 밀링 공정으로 제조된 지르콘 나노분말의 소결특성에 관한 연구)

  • Lee, Ju Seong;Kang, Jong Bong
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.95-99
    • /
    • 2016
  • In this study, 5 um sized $ZrSiO_4$ was ground to 1.9 um, 0.3 um, and 0.1 um sized powders by wet high energy milling process, and the sintering characteristics were observed. Pure $ZrSiO_4$ itself can-not be sintered to these levels of theoretical density, but it was possible to sinter $ZrSiO_4$ powder of nano-scale size of, -0.1 um to the theoretical density and to lower the sintering temperature for full density. Also, the decomposition of $ZrSiO_4$ with a size in the micron range resulted in the formation of monoclinic $ZrO_2$; however, in the nano sized range, the decomposition resulted in the tetragonal phase of $ZrO_2$. So, it was possible to improve the sintering characteristics of nano-sized $ZrSiO_4$ powders.

Densification Behaviour and Strengthening of Mullite/Ziroconia Composite with Addition of $ZrO_2$ or $ZrSiO_4$ ($ZrO_2$$ZrSiO_4$ 첨가에 따른 Mullite/Zirconia 복합체의 치밀화 거동 및 강도 증진)

  • 김인섭;이승석;박주석;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1080-1086
    • /
    • 1999
  • Mullite/zirconia composite was synthesized by adding zirconia and Zircon to mixture of Hapcheon kaolin(grade pink A) and aluminium nitrate salt in order to enhance strength of the mullite specimens. Kaolin and aluminium nitrate salt was mixed milled and calcined at 100$0^{\circ}C$ and then 5wt% mullite seed was added to increase mullite content. The influence of the additives(ZrO2 and ZrSiO4) and sintering temperature on the strength of the sintered specimens was investigated. The flexural strength of the specimens containing 10wt% zirconia was enhanced from 150MPa without the additive up to 300MPa after heat treatment at 156$0^{\circ}C$ In the case of addition of 15wt% zircon the strength of the specimens systhesized at 1$600^{\circ}C$ was 225 MPa.

  • PDF

Effect of SiO2, Al2O3, and Clay Additions on the Sintering Characteristics of Zircon (Silica, Alumnia, Clay를 첨가한 지르콘의 소결특성에 미치는 영향)

  • Lee, Keun-Bong;Jung, Seung-Hwa;Lee, Ju-Sung;Hong, Gyung-Pyo;Jo, Bum-Rae;Moon, Jong-Su;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.352-356
    • /
    • 2008
  • Effect The effect of sintering additives ($SiO_2$, $Al_2O_3$, Clay) on the mechanical characteristics of sintered zircon was investigated. 1 vol% of additives in zircon powder was was sintered at $120{\sim}1500^{\circ}C$, the mechanical characteristics were measured, and microstructure analysis were was conducted. $Al_2O_3$ and clay additions increase the formation of monoclinic and tetragonal-$ZrO_2$ formation. An addition of SiO2 addition suppressed the formation of tetragonal-$ZrO_2$ formation., The A specimen sintered at $1400^{\circ}C$ showed the a density of $4.05\;g/cm^3$ and the a microhardness of 1120 HV, respectively.

Synthesis of $(ZrSiO_4)$ Powders by the Sol-Gel Process -Effect of the Milling- (졸-겔법에 의한 지르콘$(ZrSiO_4)$ 분말 합성 -재분쇄(Milling)에 대한 효과-)

  • 신용철;신대용;한상목;남인탁
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.853-857
    • /
    • 1995
  • ZrSiO4 powders were prepared from partially hydrolyzed solution of Si(OC2H5)4 and ZrOCl2.8H2O solution by the sol-gel method and formation rate of ZrSiO4 on the reaction parameter was investigated. In order to prepare homogeneous ZrSiO4 precursor gels, the H2O/Si(OC2H5)4 molar ratio of about 2, the pH of the ZrOCl2.8H2O solution fo about 4 and stirring time of the mixed solutions of about 2 hrs were appropriate. Formation of temperature of ZrSiO4 reduced about 15$0^{\circ}C$ by milling and formation of ZrSiO4 at 1300~135$0^{\circ}C$ showed an accelerative increase through the hedvall effect by silica.

  • PDF

Determination of $SiO_2$ and $ZrO_2$ in Zircon Sand by Optical Emission Spectrometer (직독식 방출분광기를 이용한 지르콘사 중의 $SiO_2$$ZrO_2$의 분석)

  • Kim, Young Man;Jeong, Chan Yee;Han, Bong Han;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.275-282
    • /
    • 1993
  • A direct and simultaneous method to determine the $SiO_2$ and $ZrO_2$ in zircon sand of raw mineral and its treated one were studied by optical emission spectrometer using DC arc source. The synthetic standard was prepared by mixing with pure metal oxide, and it was diluted with buffer(graphite) and flux($Li_2B_4O_7$). The mixing ratio of buffer and flux and its dilution ratio to sample was investigated in order to choose the best excitation conditions. The optimum mixing and dilution ratios were 0.22:1 and 40, and the standard deviations of analytical results were 1.9% for $SiO_2$ and 4.7% for $ZrO_2$.

  • PDF

The Effect of Additives on Properties of Sintered $ZrSiO_4$ ($ZrSiO_4$ 소결체의 특성에 미치는 첨가제의 영향에 관한 연구)

  • 박금철;차명진
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.71-75
    • /
    • 1985
  • This study deals with sintering and corrosive behavior of sintered zircons mixed with 5wt% of clay $Cr_2O_3$ $CrO_3-MgO$ aqueous solution and $CrO_3-Mg(OH)_2$ aqueous solution. Measurements were conducted by firing specimens at 135$0^{\circ}C$ 145$0^{\circ}C$ and 155$0^{\circ}C$ 1$650^{\circ}C$ for 3hrs in oxidized and reduced atmospheric conditions. Following results were obtained. 1. Sintered zircon with 5 wt% clay showed that highest compressive strength and the lowest apparent porosity and the other showed less positive result than above specimen in order of zircon with $CrO_3-MgO$ aqueous solution $CrO_3-Mg(OH)_2$ aqueous solution and $Cr_2O_3$. 2. The more firing temperature increased the more its strength improved and porosity decreased and specimen which was fired over 155$0^{\circ}C$ and in reduced atmospheric condition showed better results. 3. Zircon with additives which was fired over 155$0^{\circ}C$ showed the evidence of thermal dissociation but it was not rebonded completely during cooling. 4. Zircon with $CrO_3-MgO$ aqueous solution and $CrO_3-Mg(OH)_2$ aqueous solutiion showed more corrosive resistance than zircon itself and zircon-clay system.

  • PDF