• 제목/요약/키워드: Zinc-ion batteries

검색결과 17건 처리시간 0.023초

차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향 (Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie)

  • 조정근;김재국
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

Zinc Air 이차전지의 구성요소 (Components in Zn Air Secondary Batteries)

  • 이정혜;김기택
    • 전기화학회지
    • /
    • 제16권1호
    • /
    • pp.9-18
    • /
    • 2013
  • Zinc air 전지의 구성요소와 전지의 특징을 설명하였다. 리튬 이온 전지에 비해 월등히 높은 에너지 밀도를 가지고 있지만, 충전의 비가역성으로 인한 낮은 용량 유지 특성 때문에 zinc air 이차전지는 아직 상용화되지 못하였다. Zinc air 전지는 충방전에 관여하는 반응들의 속도가 느려서 그 반응들의 속도를 촉진해야 하는 특징이 있는가 하면 동시에 부식과 수소발생 반응의 속도는 오히려 느리게 해야 하는 까다로운 조건을 만족해야 한다. 기존의 전지들과 비교하면, 기초연구뿐 아니라, 전지의 기계적구조, 부식, 복합소재적인 요소의 적용이 더욱 필요한 연구분야라고 하겠다. 출력개선과 부식방지 그리고 공기의 공급에 대비한 물의 증발의 억제 등은 상충하는 성질을 동시에 만족해야 하는 복합소재의 특성이다.

고성능 아연-이온 전지의 고품질 집전체를 위한 그래핀 필름의 결함 제어 (Controlling Defects in Graphene Film for Enhanced-Quality Current Collector of Zinc-Ion Batteries with High Performance)

  • 이영근;안건형
    • 한국재료학회지
    • /
    • 제33권4호
    • /
    • pp.159-163
    • /
    • 2023
  • Zinc-ion Batteries (ZIBs) are currently considered to be effective energy storage devices for wearable electronics because of their low cost and high safety. Indeed, ZIBs show high power density and safety compared with conventional lithium ion batteries (LIBs) and exhibit high energy density in comparison with supercapacitors (SCs). However, in spite of their advantages, further current collector development is needed to enhance the electrochemical performance of ZIBs. To design the optimized current collector for high performance ZIBs, a high quality graphene film is suggested here, with improved electrical conductivity by controlling the defects in the graphene film. The graphene film showed improved electrical conductivity and good electron transfer between the current collector and active material, which led to a high specific capacity of 346.3 mAh g-1 at a current density of 100 mA g-1, a high-rate performance with 116.3 mAh g-1 at a current density of 2,000 mA g-1, and good cycling stability (68.0 % after 100 cycles at a current density of 1,000 mA g-1). The improved electrochemical performance is firmly because of the defects-controlled graphene film, leading to improved electrical conductivity and thus more efficient electron transfer between the current collector and active material.

아연-이온 배터리의 에너지 저장 성능 향상을 위한 망간산화물이 코팅된 흑연시트의 제조 (Synthesis of Manganese Oxide Coated Graphite Sheet for Zinc-Ion Batteries with Improved Energy Storage Performance)

  • 이영근;안건형
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.68-74
    • /
    • 2021
  • Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g-1 at current density of 0.1 A g-1, high-rate performance with 109.4 mAh g-1 at a current density of 2.0 A g-1, and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g-1). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future.

Zn2GeO4와 Zn2SnO4 나노선의 리튬 및 소듐 이온전지 성능 비교 연구 (Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries)

  • 임영록;임수아;박정희;조원일;임상후;차은희
    • 전기화학회지
    • /
    • 제18권4호
    • /
    • pp.161-171
    • /
    • 2015
  • 수열합성법을 이용하여 $Zn_2GeO_4$$Zn_2SnO_4$ 나노선을 대량 합성하였고 리튬이온 전지와 소듐이온전지의 전기화학적 특성을 조사하였다. 리튬이온전지에서 $Zn_2GeO_4$ 나노선은 50 사이클 이후에 1021 mAh/g, $Zn_2SnO_4$ 나노선은 692 mAh/g의 높은 방전용량을 갖는 것을 확인하였고 두 나노선 모두 98%가 넘는 쿨롱 효율을 보였다. 따라서 이들 나노선은 고성능 리튬이온전지의 개발을 위한 음극소재로 기대된다. 또한 소듐이온전지에 대한 관심이 국내는 물론 전 세계적으로 집중이 되고 있어 처음으로 $Zn_2GeO_4$$Zn_2SnO_4$ 나노선에 대한 소듐이온전지를 제작하여 용량을 측정하였다. 측정한 결과 이들 나노선은 50 사이클 이후에 각각 168 mAh/g 과 200 mAh/g의 방전용량을 갖는 것을 확인하였고 두 나노선 모두 97%가 넘는 높은 쿨롱 효율을 보였으며 이에 우리의 첫 시도가 앞으로 많은 연구에 기여할 것으로 예상한다.

아연-공기 전지용 아세트산 아연 이수화물을 첨가한 고분자 전해질의 전기화학적 특성 (Electrochemical Properties of Gel Polymer Electrolyte including Zinc Acetate Dihydrate for Zinc-Air Batteries)

  • 김희서;이동윤;조용남
    • 한국재료학회지
    • /
    • 제33권12호
    • /
    • pp.550-557
    • /
    • 2023
  • In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.

수계전해질기반 차세대 금속이온전지 기술 (Technologies for Next-Generation Metal-Ion Batteries Based on Aqueous Electrolytes)

  • 신동옥;최재철;강석훈;박영삼;이영기
    • 전자통신동향분석
    • /
    • 제39권1호
    • /
    • pp.83-94
    • /
    • 2024
  • There have been continuous requirements for developing more reliable energy storage systems that could address unsolved problems in conventional lithium-ion batteries (LIBs) and thus be a proper option for large-scale applications like energy storage system (ESS). As a promising solution, aqueous metal-ion batteries (AMIBs) where water is used as a primary electrolyte solvent, have been emerging owing to excellent safety, cost-effectiveness, and eco-friendly feature. Particularly, AMIBs adopting mutivalence metal ions (Ca2+, Mg2+, Zn2+, and Al3+) as mobile charge carriers has been paid much attention because of their abundance on globe and high volumetric capacity. In this research trend review, one of the most popular AMIBs, zinc-ion batteries (ZIBs), will be discussed. Since it is well-known that ZIBs suffer from various (electro) chemical/physical side reactions, we introduce the challenges and recent advances in the study of ZIBs mainly focusing on widening the electrochemical window of aqueous electrolytes as well as improving electrochemical properties of cathode, and anode materials.

Mechanochemical Synthesis of ZnMn2O4 and its Electrochemical Properties as an Anode Material for Lithium-ion Batteries

  • Park, Yoon-Soo;Oh, Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3333-3337
    • /
    • 2011
  • $ZnMn_2O_4$ has been prepared by a mechanochemical process using a mixture of $Mn_2O_3$ and ZnO as starting materials, and investigated as a possible anode material for lithium-ion batteries. The phase evolution and morphologies of the ball-milled and annealed powders are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive microanalysis (EDX), respectively. The solid-state reaction for the formation of $ZnMn_2O_4$, under the given experimental conditions, is achieved in a short time (30 min), and the prepared samples exhibit excellent electrochemical performances including an enhanced initial coulombic efficiency, high reversible capacity, and stable capacity retention with cycling.

포스트 리튬 이차전지 기술 동향 (Technology Trends in Post-Lithium Secondary Batteries)

  • 최윤호;정형석
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.128-136
    • /
    • 2023
  • Lithium accounts for only 0.0017% of the earth crust, and it is produced in geographically limited regions such as South America, the United States, and China. Since the first half of 2017, the price of lithium has been continuously increasing, and with the rapid adoption of electric vehicles, lithium resources are expected to be depleted in the near future. In addition, economic blocs worldwide face intensifying scenarios such as competition for technological supremacy and protectionism of domestic industries. Consequently, Korea is deepening its dependence on China for core materials and is vulnerable to the influence of the United States Inflation Reduction Act. We analyze post-lithium secondary battery technologies that rely on more earth-abundant elements to replace lithium, whose production is limited to specific regions. Specifically, we focus on the technological status and issues of sodium-ion, zinc-air, and redox-flow batteries. In addition, research trends in post-lithium secondary batteries are examined. Post-lithium secondary batteries seem promising for large-capacity energy storage systems while reducing the costs of raw materials compared with existing lithium-based technologies.