• Title/Summary/Keyword: Zinc removal

Search Result 152, Processing Time 0.032 seconds

Electrokinetic Extraction of Heavy Metal from Clayey Soil : Desorption Characteristics During Electrical Treatment (중금속으로 오염된 점성토에서 동전기프로세스에 의한 탈착 특성)

  • Lee, Myung-Ho;Jang, Yeon-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.23-28
    • /
    • 2007
  • A number of batch isotherm and electrokinetic experiments were conducted in order to investigate the migration of zinc and its removal efficiency during electrokinetic soil processing. Sorption and desorption characteristics of zinc spiked kaolin clay have been examined by comparison with electrically induced desorption and precipitation occurring in the anode and cathode regions, respectively. The removal efficiency of zinc under the applied voltage gradient of 300 V/m was found to be up to approximately 80 % within 4 hours of the electrokinetic treatment. The study is significant with respect to the remediation of contaminated areas.

Development of a robot system for removing top dross on a zinc pot (용융아연욕 부유물 제거용 로봇시스템 개발)

  • 임태균;박상덕;이옥산
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1488-1491
    • /
    • 1996
  • Throughout CGL(Continuous Galvanizing Line) in steel works, zinc-coated steel sheets are produced which are used where long-running corrosion resistivity is required. During the galvanizing process, top dross is created and floated on the zinc pot. Because the dross leaves ill patterns on the coated sheets, it is removed manually with shovel-like tools in about twenty minutes. Because, however, the working environment is very noisy, hot and harmful to human workers, a robot system is developed and implemented on a real plant to automatically remove the top dross. It consists of a robot and its carriage system, a pot level sensor, a system controller, and special tools to collect, pick up, and put the top dross into a dross waste basket. A system software is developed to monitor the system status. A series of tests were performed to verify the robot motion and adaptation to working conditions, and proved successful work.

  • PDF

Numerical Analysis on the Improvement of Zinc Plating Booth Ventilation System (아연도금 부스 환기시스템 개선에 관한 수치해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2021
  • The purpose of this study is to suggest the optimal shape for a local air ventilation system for fume removal, which is operated in a zinc galvanizing factory, and to propose the improvement plan for a ventilation system used in a zinc galvanizing factory through flow analysis. A part of the air sprayed by an air curtain goes out. It will be necessary to research the position of an air curtain, its spray angles, and its nozzle shape. In addition, additional research needs to be conducted on the shape of the fan installed before a hood in order to make it easy to induce fume. In a local air ventilation system, air is inhaled from the outside. The higher an inlet negative pressure is, the easier fume is removed. It was found that it was necessary to install an appropriate hole in the wall on the back of a push nozzle in order to reduce an inlet negative pressure.

Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gas -II. Kinetics of Suffidation on Zinc Oxide - (고온석탄가스에서 황화물을 제거하기 위한 다공성 흡착제의 개발 -II. 산화아연의 황화반응에 관한 연구-)

  • 서인식;이재복;류경옥
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.11-22
    • /
    • 1988
  • Calcium oxide, lithium oxide and titanium oxide were investigated as additives of zinc oxide for the removal of hydrogen sulfide at high temperature. This experiment was performed in the range of 1.0-2.0 vol.% H$_2$S concentration at 623-873 K reaction temperature, using a thermogravimetric analyzer. A pore blocking model was found to fit the reaction rate and the kinetics data were sucessfully expressed by this model. The reactions between additive sorbents and hydrogen sulfide were first order with respect to hydrogen sulfide concentration in a gaseous mixture with nitrogen. Among the used sorbents, ZnO-CaO 0.5 at.% and ZnO-TiO$_2$ 2.0 at.% sorbents had the best additive effects on the sulfidation reaction between additive sorbents and hydrogen sulfide, whereas the ZnO-Li$_2$O sorbents were ineffective.

  • PDF

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

Selection of Newly Isolated Mushroom Strains for Tolerance and Biosorption of Zinc In Vitro

  • Gonen Tasdemir, F.;Yamac, M.;Cabuk, A.;Yildiz, Z.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.483-489
    • /
    • 2008
  • Nine newly isolated mushroom strains were tested to assess both their zinc tolerance and potential for zinc removal from an aqueous solution. Four strains of ectomycorrhizal fungi, namely Clavariadelphus truncatus (T 192), Rhizopogon roseolus (T 21), Lepista nuda (T 373), and Tricholoma equestre (T 174), along with five strains of white rot fungi, Lenzites betulina (S 2), Trametes hirsuta (T 587), Ganoderma spp. (T 99), Polyporus arcularius (T 438), and Ganoderma carnosum (M 88), were investigated using zinc-amended solid and liquid media. Their biosorption properties were also determined. The colony diameter and dry weight were used as tolerance indices for fungal growth. C. truncatus and T. equestre were not strongly inhibited at the highest concentrations of (225 mg/l) zinc in solid media. The most tolerant four strains with solid media, C. truncatus, G carnosum, T. hirsuta, and T. equestre, were then chosen for tolerance tests in liquid media. An ectomycorrhizal strain, C. truncatus, was also detected as the most tolerant strain in liquid media. However, the metal-tolerant strains demonstrated weak activity in the biosorption studies. In contrast, the highest biosorption activity was presented by a more sensitive strain, G. carnosum. In addition, seven different biosorbent types from G. carnosum (M 88) were compared for their Zn (II) biosorption in batch experiments.

Electrosorption Removal of the Zinc Ions from Aqueous Solution on an Artificial Electrode based in the Banana Wastes

  • Benakouche, Houda;Bounoughaz, Moussa
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.77-86
    • /
    • 2017
  • The valorization of domestic wastes becomes a very important research axis that can reduce the energy consumption and protect our environment. The objective of this study is to remove zinc ions from wastewater by using banana peels after their activation as sensor in the working electrode for an environmental application. Banana peels were dried, crushed and treated with sulfuric acid then mixed with polyaniline to improve their electrical conductivity. Cyclic voltammetry and chronoamperometry were used for electrochemistry tests. The obtained voltammogramms at well optimized conditions of applied potential of -1.3 V/SCE and initial zinc concentration of 0.2M during 2 hours of electrolysis, showed the reduction peak of the zinc at a potential of -1.14 V/SCE, which confirmed the activity of this electrode. The modeling of experimental data revealed that the adsorption was fitted by the Langmuir isotherm with a maximal adsorption capacity of 3.4188 mg/g. Changes in the structure of the powder after the electrosorption was noticed by SEM and EDX. Finally, the dosage of the electrolytic solution showed a diminution of the zinc concentration with yield of 99.99%.

Separation of Zinc Ion from Metal Plating Wastewaters by Reverse Osmosis Membrane (Membrane을 이용한 도금폐수 중 아연이온의 분리에 관한 연구)

  • 장자순;이효숙;정헌생;이원권
    • Membrane Journal
    • /
    • v.4 no.2
    • /
    • pp.106-112
    • /
    • 1994
  • The ultrafiltration(UF) and reverse osmosis(RO) tests for a model metal plating wastewater prepared with zinc sulfate, showed the zinc ion rejection coefficient of over 99% and the permeate flux of $1.49 {\times} 10^{-3}cm/sec$ at pH = 8.3. The effect of cyanide on the zinc removal was investigated. When the amount of cyanide addition was same the zinc content, the zinc was removed over 99% and the cyanide was excluded about 93%. The addition of the surfactants such a LAS-Na and EDTA-Na was found to reduce the permeate flux down to $0.76 {\times} 10^{-3}cm/sec$ at the RO membrane.

  • PDF

Effects of Zn Coating and Heat Treatment on the Corrosion of Aluminum Heat Exchanger Tubes (아연 코팅과 열처리에 따른 알루미늄 열교환기 소재의 부식)

  • Cho, Soo Yeon;Kim, Jae Jung;Jang, Hee Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.24-32
    • /
    • 2019
  • The effects of zinc coating and heat treatment on the corrosion resistance of aluminum alloys including A1100 and the modified A3003, used as heat exchanger tube were investigated in this study. The grain size of the heat-treated specimen is larger than that of the specimen without heat treatment, but the grain size did not significantly affect the corrosion behavior. The concentration of zinc was noted at 11.3 ~ 31.4 at.% for the as-received Zn-coated samples and reduced to 1.2 ~ 2.4 at.% after the heat treatment, as measured by the scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS) on the surface. The concentration of oxygen is 22 ~ 46 at.% for the zinc coated specimens while noted at 7.4 ~ 12.8 at.% for the specimens after the removal of the coating. The corrosion behavior depended largely on the concentrations of zinc, aluminum, and oxygen on the specimen surface, but not on the Mo content. The corrosion potential was high and the corrosion rate was low for a specimen with a low zinc content, a high aluminum content, and a high oxygen content.

Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (I) (도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (I))

  • Jung, Yeon-Hoon;Lee, Soo-Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.979-983
    • /
    • 2009
  • The mean pH of wastewater discharged from the plating process is 2, so a less amount of alkali is required to raise pH 2 to 5. In addition, if sodium sulfite is used to raise pH 5 to 9 in the secondary treatment, caustic soda or slaked lime is not necessary or only a small amount is necessary because sodium sulfite is alkali. Thus, it is considered desirable to use only $FeSO_4{\cdot}7H_2O$ in the primary treatment. At that time, the free cyanide removal rate was highest as around 99.3%, and among heavy metals, Ni showed the highest removal rate as around 92%, but zinc and chrome showed a low removal rate. In addition, the optimal amount of $FeSO_4{\cdot}7H_2O$ was 0.3g/L, at which the cyanide removal rate was highest. Besides, the free cyanide removal rate was highest when pH value was 5. Of cyanide removed in the primary treatment, the largest part was removed through the precipitation of ferric ferrocyanide: $[Fe_4(Fe(CN)_6]_3$, and the rest was precipitated and removed through the production of $Cu_2[Fe(CN)_6]$, $Ni_2[Fe(CN)_6]$, CuCN, etc. Furthermore, it appeared more effective in removing residual cyanide in wastewater to mix $Na_2SO_3$ and $Na_2S_2O_5$ at an optimal ratio and put the mixture than to put them separately, and the optimal weight ratio of $Na_2SO_3$ to $Na_2S_2O_5$ was 1:2, at which the oxidative decomposition of residual cyanide was the most active. However, further research is required on the simultaneous removal of heavy metals such as chrome and zinc.