• Title/Summary/Keyword: Zinc removal

Search Result 152, Processing Time 0.027 seconds

Inhibition of Human Neutrophil Elastase by NSAIDs and Inhibitors, and Molecular Pharmacological Mechanism of the Inhibition (비스테로이드성 항염증제와 효소 억제제에 의한 사람 중성구 Elastase의 활성도 억제 및 분자약리학적 기전)

  • Kang, Koo-Il;Kim, Woo-Mi;Hong, In-Sik;Lee, Moo-Sang
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.425-431
    • /
    • 1996
  • Human neutrophil elastases (HNElastase, EC 3.4.21.37), a causative factor of inflammatory diseases, are regulated by plasma proteinase inhibitors, alpha-proteinase inhibitor and ${\alpha}_2-macroglobulin$. Under certain pathological conditions, however, released enzymes or abnormal function of inhibitors may cause various inflammatory disease. NSAIDs have been clinically applied for treatment of inflammatory diseases. Inhibition of cyclooxygenase is a known mechanism of action of NSAIDs in the treatment of inflammatory disease. In in vitro experiments, HNElastase was inhibited by naproxen, phenylbutazone, and oxyphenbutazone, but ibuprofen, ketoprofen, aspirin, salicylic acid, and tolmetin did not inhibit elastase. HNElastase was also inhibited by chelating agents, EDTA & EGTA, and tetracyclines. Removal of divalent metal ions by EDTA caused inhibition of elastase, and reconstitution of the metal ions recovered the enzyme activity to a certain level. Frequencies and contours in the Raman spectra of various conditions of human neutrophil elastase undergo drastic changes upon partial removal and/or reconstitution of calcium and zinc ions. The metal ion content dependent activities and change of the contour of the Raman spectrogram suggest us that the mechanism of action of a chelator or chelator-like agents on neutrophil elastase may be related to the conformational change at/or near the active site, especially -C=O radical or -COOH radical.

  • PDF

Studies on Heavy Metal Ion Adsorption by Soils. -(Part 1) PH and phosphate effects on the adsorption of Cd, Cu, Ni and Zn by mineral soils with low CEC and low organic carbon content (중금속(重金屬) 이온의 토양(土壤) 흡착에 관한 연구 -(제1보) CEC 및 유기탄소 함량이 낮은 광물토양에의 Cd, Cu, Ni, 및 Zn의 흡착과 이에 미치는 pH 및 인산의 효과-)

  • Kim, Myung-Jong;Motto, Harry L.
    • Applied Biological Chemistry
    • /
    • v.20 no.3
    • /
    • pp.300-309
    • /
    • 1977
  • The information related to the heavy metal pollution in the environment was obtained from studies on the effects of pH, phosphate and soil properties on the adsorption of metal ions (Cd, Cu, Ni, and Zn) by soils. Three soil materials; soil 1 with low CEC (8.2 me/100g) and low organic carbon content (0.34%); soil 2 with high CEC (36.4 me/100g) and low organic carbon content (1.8%) and soil 3 with high CEC (49.9 me/100g) and high organic carbon content (14.7%) were used. Soils were adjusted to several pH's and equilibrated with metal ion mixtures of 4 different concentrations, each having equal equivalents of each metal ion (0.63, 1.88, 3.12 and 4.38 micromoles per one gram soil with and without 10 micromoles of phosphate per one gram soil). Reported here are the results of the equilibrium study on soil I. The rest of the results on soil 2 and soil 3 will be repoted subsequeutly. Generally higher metal ion concentration solution resulted in higher final metal ion concentrations in the equilibrated solution and phosphate had minimal effect except it tended to enhance removal of cadmium and zinc from equilibrated solutions while it tended to decrease the removal of copper and nickel. In soil 1, percentages of added metal ions removed at pH 5.10 were; Cu 97, Ni 69, Cd 63, and Zn 55, while increasing pH to 6.40, they were increased to Cu 90.9, Zn 99, Ni 96, and Cd 92 per As initial metal ion concentration increased, final metal ion concentrations in the equilibrated solution showed a relationship with pH of the system as they fit to the equation $p[M^{++}]=a$ pH+b where $p[M^{++}]=-log$[metal ion concentration in Mol/liter]. The magnitude of pH and soil effects were reflected in slope (a) of the equation, and were different among metal ions and soils. Slopes (a) for metal ions in the aqueous system are all 2. In soil 1 they were; Zn 1.23, Cu 0.99, Ni 0.69 and Cd 0.59 at highest concentration. The adsorption of Cd, Ni, and Zn in soil 1 could be represented by the Iangmuir isotherm. However, construction of the Iangmuir isotherm required the correction for pH differences.

  • PDF

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

A Study of Influence Factors for Immobilizing Heavy Metals in Contaminated Soil (중금속으로 오염된 토양의 고정화 영향인자에 관한 연구)

  • Hwang, An-Na;Na, Seung-Min;Khim, Jee-Hyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2007
  • Soil contamination by heavy metals was environmental concern due to its effect on human. In this study, monopotassium phosphate $(KH_2PO_4)$ used as phosphate source to remediate the contaminated soil with heavy metals and factors such as reaction time, initial concentration and pH of phosphate solution, species of heavy metal (lead, cadmium, zinc) and particle size were controlled. Heavy metals were removed in the order Pb > Zn > Cd and the maximum effectiveness was achieved for Pb. The removal efficiency of lead was from 95% to 100% and occurred rapidly occurred during 10 minutes. Mechanism of lead immobilization is dissolution of phosphate and the forming of a new mineral with phosphate having extremely low solubility.

Preparation and Reactivity of ZnO-Al$_2$O$_3$ Desulfurization Sorbents for Removal H$_2$S ($H_2S$제거를 위한 ZnO-$Al_2O_3$ 탈황제의 제조 및 반응특성 연구)

  • 박노국;이종욱;류시옥;이태진;김재창
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.136-141
    • /
    • 2002
  • Advanced zinc-based sorbents, ZA, for Hot Gas Desulfurization (HGD) process in Integrated Gasification Combined Cycle (IGCC) systems were formulated with $Al_2$O$_3$ as support to enhance the reactivity and their reactive characteristics was also investigated in this study. Changes in the physical and chemical properties of the sorbents based on both the mole ratios of ZnO/Al$_2$O$_3$ and the calcination temperatures were examined by a XRD. The results obtained in our desulfurization-regeneration cycle tests demonstrated that degradation of sorbents due to the heat generation could be improved through the optimization of the $Al_2$O$_3$ contents and of the calcination temperatures. From the durability study it is concluded that the prepared ZA sorbents with additives have the desirable features for HGD.

A Study of Regeneration Reaction for Desulfurization Sorbents using Natural Manganese Ore (천연 망간 광석 탈황제의 재생 반응 특성 연구)

  • 윤여일;윤용승;김성현
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • Natural manganese ore was selected as main active component for a non-zinc desulfurization sorbent used in the gas clean-up process of the integrated gasification combined cycle (IGCC) because of excellent H$_2$S removal efficiency and economical aspect . In this study, the regeneration characteristics of sorbent after desulfurization reaction were determined in a thermobalance reactor and a fixed bed reactor in the temperature range of 350~55$0^{\circ}C$. The mixed gases of oxygen and nitrogen are used as the regeneration reaction gases for manganese sorbent. According to Mn-S-O phase diagram, the manganese sorbent has a low regeneration efficiency in medium temperature due to formation of MnSO$_4$ and the regeneration temperature must be over 85$0^{\circ}C$. To improve that problem, ammonia and steam was added in regeneration mixed gases. Effect of new regeneration method was determined by XRD and difference of desulfurization through multicycle tests.

Inhibitory Effect of the Selected Heavy Metals on the Growth of the Phosphorus Accumulating Microorganism, Acinetobacter sp.

  • Chung, Keun-Yook;Han, Seok-Soon;Kim, Hong-Ki;Choi, Guak-Soon;Kim, In-Su;Lee, Sang-Sung;Woo, Sun-Hee;Lee, Kyung-Ho;Kim, Jai-Joung
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This study was initiated to evaluate the inhibitory effect of selected heavy metals on the growth of Acinetobacter sp. Down as one of the phosphorus accumulating microorganisms (PAO) involved in the enhanced biological phosphorus removal (EBPR) process of the wastewater treatment plant. Acinetobacter sp. was initially selected as a starting model microorganism and was grown under aerobic condition for this experiment. The heavy metals selected and investigated in this study were cadmium (Cd), copper (Cu), mercury (Hg), nickel (Ni), and zinc (Zn). Median $(IC_{50})$ and threshold $(IC_{10})$ inhibitory concentrations for Cd, Cu, Hg, Ni, and Zn were 2.95 and 1.45, 4.92 and 2.53, 0.03 and 0.02, 1.12 and 0.43, 14.84 and 5.46 mg $L^{-1}$, respectively. We demonstrated that most of heavy metals tested in the experiment inhibited the growth of Acinetobacter sp. in the range of predetermined concentrations. Based on the data obtained from the experiment, Hg was the most sensitive to Acinetobacter sp., then Ni, Cd, Cu, and Zn in order.

Increased Microbial Resistance to Toxic Wastewater by Sludge Granulation In Upflow Anaerobic Sludge Blanket Reactor

  • Bae, Jin-Woo;Rhee, Sung-Keun;Kim, In S.;Hyun, Seung-Hoon;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.901-908
    • /
    • 2002
  • The relationship between the layered structure of granules in UASB reactors and microbial resistance to toxicity was investigated using disintegrated granules. When no toxic materials were added to the media, the intact and disintegrated granules exhibited almost the same ability to decrease COD and to produce methane. However, when metal ions and organic toxic chemicals were added to a synthetic wastewater, he intact granules were found to be more resistant to toxicity than the disintegrated granules, as determined by the methane production. The difference in resistance between the intact and disintegrated granules was maximal, with toxicant concentrations ranging from 0.5 mM to 2 mM for trichloroethylene with toluene and 5 mM to 20 mM for metal ions (copper, nickel, zinc. chromium, and cadmium ions). The augmented COD removal rate by granulation compared to disintegrated granules was also measured in the treatment of synthetic and real wastewaters; synthetic wastewater, $-2.6\%$; municipal wastewater, $2.8\%$; swine wastewater, $6.4\%$; food wastewater, $25.0\%$; dye works wastewater, $42.9\%$; and landfill leachate, $61.8\%$. Continuous reactor operation also demonstrated that the granules in the UASB reactor were helpful in treating toxic wastewater, such as landfill leachate.

Hazardous Air Pollutants Emission Characteristics from Cement Kilns Co-burning Wastes

  • Pudasainee, Deepak;Kim, Jeong-Hun;Lee, Sang-Hyeob;Cho, Sung-Jin;Song, Geum-Ju;Seo, Yong-Chil
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • Emission characteristics of air pollutants from three commercially operating cement kilns co-burning waste were investigated. The major heavy metals emitted were mercury (Hg), zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) Removal efficiency of the bag filter was above 98.5% for heavy metals (except Hg), and above 60% for Hg. Higher fractions of heavy metals entering the bag filter were speciated to cement kiln dust. On average, 3.3% of the -heavy metals of medium and low toxicity (Pb, Ni, and Cr) entering the bag filter were released into the atmosphere. Among highly toxic heavy metals, 0.14% of Cd, 0.01% of As, and 40% of Hg entering the bag filter were released into the atmosphere. In passing through the bag filter, the proportion of oxidized Hg in all cases increased. Emission variations of hazardous air pollutants in cement kilns tested were related to raw materials, fuel, waste feed and operating conditions. Volatile organic compounds detected in gas emissions were toluene, acrylonitrile benzene, styrene, 1,3-butadiene, and methylene chloride. Although hazardous air pollutants in emissions from cement kilns co-burning waste were within the existing emission limit, efforts are required to minimize their levels.

Evaluation on Removal Efficiency of Methylene Blue Using Nano-ZnO/Laponite/PVA Photocatalyzed Adsorption Ball (Nano-ZnO/Laponite/PVA 광촉매 흡착볼의 메틸렌블루 제거효율 평가)

  • Oh, Ju Hyun;Ahn, Hosang;Jang, Dae Gyu;Ahn, Chang Hyuk;Lee, Saeromi;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.636-642
    • /
    • 2013
  • In order to overcome drawbacks (i.e., filtration and recovery) of conventional powder type photocatalysts, nano-ZnO/Laponite/PVA (ZLP) photocatalyzed adsorption balls were developed by using in situ mixing of nanoscale ZnO as a photocatalyst, and Laponite as both adsorbent and supporting media in deionized water, followed by the poly vinyl alcohol polymerization with boric acid. The optimum mixing ratio of nano-ZnO:Laponite:PVA:deionized water was found to be 3:1:1:16 (by weight), and the mesh and film produced by PVA polymerization with boric acid might inhibit both swelling of Laponite and detachment of nanoscale ZnO from ZLP balls. Drying ZLP balls with microwave (600 watt) was found to produce ZLP balls with stable structure in water, and various sizes (55~500 ${\mu}m$) of pore were found to be distributed based on SEM and TEM results. In the initial period of reaction (i. e., 40 min), adsorption through ionic interaction between methylene blue and Laponite was the main removal mechanism. After the saturation of methylene blue to available adsorption sites for Laponite, the photocatalytic degradation of methylene blue occurred. The effective removal of methylene blue was attributed to adsorption and photocatalytic degradation. Based on the results from this study, synthesized ZLP photocatalyzed adsorption balls were expected to remove recalcitrant organic compounds effectively through both adsorption and photocatalytic degradation, and the risks of environmental receptors caused by detachment of nanoscale photocatalysts can be reduced.