• Title/Summary/Keyword: Zinc reduction

Search Result 233, Processing Time 0.027 seconds

Physicochemical properties of a calcium aluminate cement containing nanoparticles of zinc oxide

  • Amanda Freitas da Rosa;Thuany Schmitz Amaral;Maria Eduarda Paz Dotto;Taynara Santos Goulart;Hebert Luis Rossetto;Eduardo Antunes Bortoluzzi;Cleonice da Silveira Teixeira;Lucas da Fonseca Roberti Garcia
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.3.1-3.14
    • /
    • 2023
  • Objectives: This study evaluated the effect of different nanoparticulated zinc oxide (nano-ZnO) and conventional-ZnO ratios on the physicochemical properties of calcium aluminate cement (CAC). Materials and Methods: The conventional-ZnO and nano-ZnO were added to the cement powder in the following proportions: G1 (20% conventional-ZnO), G2 (15% conventional-ZnO + 5% nano-ZnO), G3 (12% conventional-ZnO + 3% nano-ZnO) and G4 (10% conventional-ZnO + 5% nano-ZnO). The radiopacity (Rad), setting time (Set), dimensional change (Dc), solubility (Sol), compressive strength (Cst), and pH were evaluated. The nano-ZnO and CAC containing conventional-ZnO were also assessed using scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Radiopacity data were analyzed by the 1-way analysis of variance (ANOVA) and Bonferroni tests (p < 0.05). The data of the other properties were analyzed by the ANOVA, Tukey, and Fisher tests (p < 0.05). Results: The nano-ZnO and CAC containing conventional-ZnO powders presented particles with few impurities and nanometric and micrometric sizes, respectively. G1 had the highest Rad mean value (p < 0.05). When compared to G1, groups containing nano-ZnO had a significant reduction in the Set (p < 0.05) and lower values of Dc at 24 hours (p < 0.05). The Cst was higher for G4, with a significant difference for the other groups (p < 0.05). The Sol did not present significant differences among groups (p > 0.05). Conclusions: The addition of nano-ZnO to CAC improved its dimensional change, setting time, and compressive strength, which may be promising for the clinical performance of this cement.

Electricity Production by Metallic and Carbon Anodes Immersed in an Estuarine Sediment (퇴적토에 담지된 금속 및 탄소전극에 의한 전기 생산 특성)

  • Song, Hyung-Jin;Rhee, In-Hyoung;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3731-3739
    • /
    • 2009
  • One-chambered sediment cells with a variety of anodic electrodes were tested for generation of electricity. Material used for anodes was iron, brass, zinc/iron, copper and graphite felt which was used for a common cathode. The estuarine sediment served as supplier of oxidants or electron-producing microbial habitat which evoked electrons via fast metal corrosion reactions or a complicated microbial electron transfer mechanism, respectively. Maximum power density and current density were found to be $6.90\;W/m^2$ (iron/zinc) and $7.76\;A/m^2$ (iron), respectively. Interestingly, copper wrapped with carbon cloth produced better electric performance than copper only, by 60%, possibly because the cloth not only prevented rapid corrosion on the copper surface by some degrees, but also helped growing some electron-emitting microbes on its surface. At anodes oxidation reduction potential(ORP) was kept to be stationary over time except at the very initial period. The pH reduction in the copper and copper/carbon electrodes could be a sign of organic acid production due to a chemical change in the sediment. The simple estimation of interfacial, electrical resistances of electrodes and electrolyte in the sediment cell that a key to the electricity generation should be in how to control corrosion rate or microbial electron transfer activity.

Method for Rapid Determination and Removal of Nitrogen Oxides in Flue Gases (Ⅰ). Rapid Determination on Nitrogen Oxides (배기가스중 질소산화물의 신속측정법과 그 제거에 관한 연구 (제1보). NO$_x$의 신속 정량법)

  • Yong Keun Lee;Tong Oh Seo;Kee Jung Paeng;Man Koo Kim;Kyu Ja Whang
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 1985
  • Oxides of nitrogen (NO$_x$) in exhaust gases was determined by absorbing the gas in alkaline peroxide solution containing 0.03${\%}$ H2O2 and 0.1N NaOH. About 100 ppm of NO$_x$ was rapidly oxidized to NO$_2$ or N$_2$O$_5$ by H$_2$O$_2$ and required a contact time of 2 minutes with the absorbing solution for complete absorption. With vigorous shaking including air or oxygen gas, high concentration of NO$_x$ (>200 ppm) can be absorbed within 30 minutes. The remaining H$_2$O$_2$ affect the absorbance of color solution strongly. However, the excess H$_2$O$_2$ was completely decomposed by zinc powder 0.5g and the sample solution should be adjusted to the pH range 6.1∼6.6 before the reduction so that conversion of nitrate to nitrite ion is possible. The absorbed NO$_x$ is determined colorimetrically by the diazotization-coupling method with sulfonilamide and NEDA as the coupling agent. The sensitivity of the new method was 4.48 ${\times}$ 10$^4$ as molar absorptivity which was high sensitive compared with that obtained for the usual zinc reduction NEDA method with O$_3$. This method was far more rapid, brief and accurate than previously published O$_3$-NEDA method in Korean industrial standard.

  • PDF

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Characteristics of Converter Slag Aggregates Reformed by $SiO_2$ added Reduction ($SiO_2$를 첨가하여 환원개질한 전로슬랙의 골재특성)

  • ;T. R. Meadowcroft
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.52-62
    • /
    • 2000
  • In order to maximize the recycling of converter slag to the more valuable fields, such as high quality aggregates for construction, cement industry and flux for ion making. It will be very important to control the compositions and properties of converter slag to suit the purpose of utilizastion. In this study, converter slag (STELCO, CANADA) was mixed with 5%~30% $SiO_2$and 7% carbon, and then reduced at $1650^{\circ}C$. After the reduction was completed, the reformed slags were cooled to room temperature in the furnace. All of the slags were then characterized using SEM-EDX, XRD and chemical analysis. Also the compressive strengths and densities of the reformed slags were measured to compare with natural aggregates. XRD analysis shows that th phases of reformed slags are changed from bredigite+merwinite mixed phases of 10% $SiO_2$added reduction to akermanite phases of 20% and 30% $SiO_2$ added reduction. But the SEM-EDX analysis revealed that the phase distribution of the reformed slags was changed very sensitively and complicately depends on the change of slag compositions. And also the properties of reformed slags are changed very much depend on the phase distribution. About one third of Cadmium and on fifth of Vanadium are remained in reduction reformed converter slag. Another heavy metal elements such as cobalt, zinc, lead are removed up to more than 90-95% of original slag. The compressive strength and density of 25% $SiO_2$ added and reformed slag is very near to natural granite. This is superior more than 10% to Thyssen's $SiO_2$ added and oxidized converter slag aggregates.

  • PDF

Reduction of Artifacts in Magnetic Resonance Imaging with Diamagnetic Substance (반자성 물질을 이용한 자기공명영상검사에서의 인공물 감소)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.581-588
    • /
    • 2019
  • MRI is superior when contrasted to help the organization generate artifacts resolution, but also affect the diagnosis and create a image that can not be read. Metal is inserted into the tooth, it is necessary to often be inhibited in imaging by causing the geometric distortion due to the majority and if the difference between the magnetic susceptibility of a ferromagnetic material or paramagnetic reducing them. The purpose of this study is to conduct a metal artefact in accordance with the analysis using a diamagnetic material. The magnetic material include a wire for the orthodontic bracket and a stainless steel was used as a diamagnetic material was used copper, zinc, bismuth. Testing equipment is sequenced using 1.5T, 3T was used was measured using a SE, TSE, GE, EPI. A self-produced phantom material was used for agarose gel (10%) to a uniform signal artifacts causing materials are stainless steel were tested by placing in the center of the phantom and cover inspection of the positive cube diamagnetic material of 10mm each length.After a measurement artefact artifact zone settings area was calculated using the Wand tool After setting the Low Threshold value of 10 in the image obtained by subtracting images, including magnetic material from a pure tool phantom images using Image J. Metal artifacts occur in stainless steel metal artifact reduction was greatest in the image with the bismuth diamagnetic materials of copper and zinc is slightly reduced, but the difference in degree will not greater. The reason for this is thought to be due to hayeotgi offset most of the susceptibility in bismuth diamagnetic susceptibility of most small ferromagnetic. Most came with less artifacts in image of bismuth in both 1.5T and 3T. Sequence-specific artifact reduction was most reduced artifacts from the TSE 1.5T 3T was reduced in the most artifacts from SE. Signal-to-noise ratio was the lowest SNR is low, appears in the implant, the 1.5T was the Implant + Bi Cu and Zn showed similar results to each other. Therefore, the results of artifacts variation of diamagnetic material, magnetic susceptibility (${\chi}$) is the most this shows the reduced aspect lower than the implant artificial metal artifacts criteria in the video using low bismuth susceptibility to low material the more metal artifacts It was found that the decrease. Therefore, based on the study on the increase, the metal artifacts reduction for the whole, as well as dental prosthesis future orthodontic materials in a way that can even reduce the artifact does not appear which has been pointed out as a disadvantage of the solutions of conventional metal artifact It is considered to be material.

Assessment of Biochemical Efficiency for the Reduction of Heavy Metal and Oil Contaminants in Contaminated Soils (토양내 중금속 및 유류 오염농도 저감을 위한 생화학적 기작의 효율성 평가)

  • Kim, Man-Il;Jeong, Gyo-Cheol;Kim, Eul-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.253-262
    • /
    • 2012
  • With the aim of remediating soils contaminated by heavy metals and oil, experimental research was conducted to evaluate the optimal design factors for remediation in terms of efficient soil washing methods and processes. The experiments employed absorptiometric analysis and gas chromatography methods to reduce the concentration of heavy metals such as cooper (Cu), lead (Pb), and zinc (Zn), and total petroleum hydrocarbons (TPH) in contaminated soils. The experimental processes consisted of deciding on the washing solution, washing time, and dilution ratio for contaminated soils. A dissolution analysis of heavy metals was then performed by the addition of surfactant, based on the results of the decision experiments, and the injection processes of microbes and hydrogen peroxide were selected. The experimental results revealed that reduction effects in contaminated soils under the experimental conditions were most efficient with hydrochloric acid 0.1 mole, washing time 1 hour, and dilution ratio 1:3, individually. Additional reduction effects for heavy metals and TPH were found with the addition of a washing solution of 1% of surfactant. The addition of microbes and hydrogen peroxide caused a reduction in TPH concentration.

CO2 Decomposition Characteristics of Zn-ferrite Powder Prepared by Hydrothermal and Solid State Reaction (수열합성법과 고상법을 이용해 제조된 Zn-ferrite 분말의 이산화탄소 분해 특성)

  • Nam, Sung Chan;Park, Sung Youl;Yoon, Yeo Il;Jeong, Soon Kwan
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.555-561
    • /
    • 2011
  • The objective of this study is the development of carbon recycle technology which converts $CO_2$ captured from flue gas to CO or carbon and reuse in industrial fields. Since $CO_2$ is very stable and difficult to decompose, metal oxide was used as an activation agent for the decomposition of $CO_2$ at low temperature. Metal oxides which convert $CO_2$ to CO or carbon at $500^{\circ}C$ were prepared using Zn-ferrite by the solid state reaction and hydrothermal synthesis. The behaviors of $CO_2$ decomposition were studied using temperature programmed reduction/oxidation (TPR/TPO) and thermogravimetric analyzer (TGA). Zn-ferrite containing 5 wt% ZnO showed the largest reduction and oxidation. Reduction by $H_2$ was 26.53 wt%, oxidation by $CO_2$ was 25.73 wt% and 96.98% of adsorbed $CO_2$ was decomposed to $CO_2$ and carbon with excellent oxidation-reduction behaviors.

Evaluation of contamination for the Andong-dam sediment and a magnetic separation for reducing the contamination level

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.31-35
    • /
    • 2019
  • Andong-dam was built up in 1967 and it is one of the biggest dams in Korea. Previous studies showed that the sediments are highly contaminated with heavy metals such as arsenic, cadmium, and lead. Many research projects are going on to find out the source of the contamination, to evaluate the toxicities to ecosystem, to estimate the volume of sediment to be treated and to find out a good remediation method. Reports show that the sediment is highly contaminated and the main contamination source is supposed to be abandoned mines and a zinc refinery located upper stream of the river. A magnetic separation has been tested as a treatment method for the dredged sediment. Lab scale test showed that the magnetically captured portion is about 10% in weight but the contamination of heavy metal is much higher than the contamination of the passed portion. This indicates that a magnetic separation could be applied for the purpose of reduction of sediment to be treated and for increasing the volume of low toxic sediments which can be dumped as general waste. A magnetic separation using a HGMS has been tested for the sediment with variable magnetic field and the results showed the higher magnetic field increase the captured portion but the concentrating effect of heavy metal was weakened. Further study is needed to establish a useful technology and optimization between decontamination and reduction of sediment volume.

Light Scattering from Microscopic Structure and Its Role on Enhanced Haze Factor

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.340-340
    • /
    • 2016
  • We have prepared alumina (Al2O3) doped zinc oxide (AZO) films by DC magnetron sputtering (MS) technique and obtained higher self surface texturing at a high target angle (f). We have characterized the films and applied it as a front electrode of a single junction amorphous silicon solar cell. At a lower f the deposited films show higher values of optical gap (Eg), charge carriers mobility & concentration, crystallite grain size and wider wavelength range of transmission. At higher target angle the sheet resistance, surface roughness, haze factor etc for the films increase. For f=72.5o the haze factor for diffused transmission becomes 6.46% at 540 nm wavelength. At f=72.5o the material shows a reduction in crystallinity and evolution of a hemispherical-type sub-micron surface textures. A Monte Carlo method (MCM) of simulation of the AZO film deposition shows that such an enhanced self-surface texturing of the films at higher f is possible.

  • PDF