• Title/Summary/Keyword: Zinc decomposition process

Search Result 10, Processing Time 0.029 seconds

Decomposition Mechanism of Waste Hard Metals using by ZDP (Zinc Decomposition Process) (ZDP(Zinc Decomposition Process)를 이용한 폐 초경합금의 분해기구)

  • Pee, Jae-Hwan;Kim, Yoo-Jin;Sung, Nam-Eui;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.173-177
    • /
    • 2011
  • Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc valatilization pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 h at $650^{\circ}C$, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of ${\gamma}-{\beta}1$ phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at $1000^{\circ}C$.

Effects of the Decomposition Residue of Compound Additive on Resintering Behavior

  • Kim, H.S.;C.Y. Joung;Kim, S.H.;S.H. Na;Lee, Y.W.;D.S. Sohn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.323-330
    • /
    • 2002
  • Various types of compounds were tested with the aspects of decomposition and formation of residue in a $CO_2$ or 7H$_2$+93$N_2$ atmosphere. The evaporation temperature range of each compound was determined from thermogravimetric curve. Decomposition of dicarbon amide, stearic acid, acrowax and zinc stearate was studied by thermogravimetry in $CO_2$ or in 7H$_2$+93$N_2$ atmosphere. All compounds were decomposed in $CO_2$ atmosphere at lower than 40$0^{\circ}C$, but the residue, ZnO remained for zinc stearate. ZnO did not decompose in $CO_2$ atmosphere up to 130$0^{\circ}C$, but reduced into Zn metal and disappeared in the temperature range of $600^{\circ}C$ to 120$0^{\circ}C$ in 7H$_2$+93$N_2$ atmosphere. The effect of residue, which trapped in closed pores of sintered pellet, on the thermal stability was studied using the resintering test at 1$700^{\circ}C$ in 7H$_2$+93$N_2$ atmosphere. In the case of oxidative sintered pellet with admixing zinc stearate, the cavity formation accompanied with a density drop after resintering is due to the pressure of the Zn gases trapped in the isolated pores.

Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides

  • Lee, Bo-Ra;Ko, Nan-Hee;Ahn, Byoung-Sung;Cheong, Min-Serk;Kim, Hoon-Sik;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2025-2028
    • /
    • 2007
  • Homogeneous zinc tetrahalide complexes, highly active catalysts for the coupling reactions of alkylene oxide and CO2 produce alkylene carbonates, were heterogenized due to their tendency to decompose produced alkylene carbonates during the distillation process. Heterogenization of homogeneous zinc tetrahalide complexes was achieved by polymerizing 1-alkyl-3-vinylimidazolium zinc tetrahalides. These polymerized zinc tetrahalide catalysts displayed similar activities to their corresponding monomeric analogues for the coupling reactions of carbon dioxide with ethylene oxide (EO) or propylene oxide (PO) to produce ethylene carbonate (EC) or propylene carbonate (PC). TGA studies showed that the polymer-supported zinc tetrahalide catalysts are thermally stable up to 320 oC. The catalyst recycle test showed that the supported catalysts could be reused over six times. After removal of the polymer-supported catalyst through a simple filtration, EC was able to be isolated without decomposition.

Low temperature synthesis of $ZnWO_4$ nanopowders using polymeric complex precursor (착체중합법에 의한 $ZnWO_4$ 나노분말의 저온합성)

  • 류정호;임창성;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.133-137
    • /
    • 2002
  • $ZnWO_4$ nano-powders were successfully synthesized at low temperature by polymerized complex method using zinc acetate and tungstic acid as starting materials. The polymeric precursors were heat-treated at temperatures from 300 to $600^{\circ}C$ for 3 h. The precursors and heat-treated powders were evaluated for crystallization process, thermal decomposition, surface morphology and crystallite size. Crystallization of the $ZnWO_4$ powders were detected at $400^{\circ}C$ and entirely completed at a temperature of $600^{\circ}C$. The particles heat-treated at $400^{\circ}C$ showed primarily co-mixed morphology with spherical and silk-worm-like forms, while the particles heat-treated at $500^{\circ}C$ showed more homogeneous morphology. The average crystalline sizes were 17.62~24.71 nm showing an ordinary tendency to increase with the temperatures from 400 to $600^{\circ}C$.

Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (I) (도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (I))

  • Jung, Yeon-Hoon;Lee, Soo-Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.979-983
    • /
    • 2009
  • The mean pH of wastewater discharged from the plating process is 2, so a less amount of alkali is required to raise pH 2 to 5. In addition, if sodium sulfite is used to raise pH 5 to 9 in the secondary treatment, caustic soda or slaked lime is not necessary or only a small amount is necessary because sodium sulfite is alkali. Thus, it is considered desirable to use only $FeSO_4{\cdot}7H_2O$ in the primary treatment. At that time, the free cyanide removal rate was highest as around 99.3%, and among heavy metals, Ni showed the highest removal rate as around 92%, but zinc and chrome showed a low removal rate. In addition, the optimal amount of $FeSO_4{\cdot}7H_2O$ was 0.3g/L, at which the cyanide removal rate was highest. Besides, the free cyanide removal rate was highest when pH value was 5. Of cyanide removed in the primary treatment, the largest part was removed through the precipitation of ferric ferrocyanide: $[Fe_4(Fe(CN)_6]_3$, and the rest was precipitated and removed through the production of $Cu_2[Fe(CN)_6]$, $Ni_2[Fe(CN)_6]$, CuCN, etc. Furthermore, it appeared more effective in removing residual cyanide in wastewater to mix $Na_2SO_3$ and $Na_2S_2O_5$ at an optimal ratio and put the mixture than to put them separately, and the optimal weight ratio of $Na_2SO_3$ to $Na_2S_2O_5$ was 1:2, at which the oxidative decomposition of residual cyanide was the most active. However, further research is required on the simultaneous removal of heavy metals such as chrome and zinc.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

High Temperature Desulfurization over ZnO-Fe2O3 Mixed Metal Oxide Sorbent (ZnO-Fe2O3 복합금속 산화물을 이용한 고온에서의 황화수소 제거에 관한 연구)

  • Lee, Jae-Bok;Lee, Young-Soo;Yoo, Kyong-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 1994
  • Introduction : Recently, water and environmental pollution becomes serious social problem and high technology makes this pollution accelerate. Hydrogen sulfide, the main subject of our research, is one of the most dangerous air pollutant like SO$_x$ and NO$_x$. The major contaminant in coal gasification is H$_2$S, which is very toxic, hazardous and extremely corrosive. Therefore, control of hydrogen sulfide to a safe level is essential. Although commercial desulfurization process called liquid scrubbing is effective for removal of H$_2$S, it has drawbacks, the loss of sensible heat of the gas and costly wastewater treatment. Many investigations are carried out about high-temperature removal ol H$_2$S in hot coal-derived gas using metal oxide or mixed metal qxide sorbents. It was reported that ZnO was very effective sorbent for H2S removal, but it has big flaw to vaporize elemental zinc above 600\ulcorner \ulcorner As alternative, metal oxides such as CaO, $Fe_2O_3$, TiO$_2$ and CuO were added to ZnO. Especially, different results are reported for $Fe_2O_3$ additive. Tamhankar et al. reported SiO$_2$ with 45 wt% $Fe_2O_3$ sorbent is favorable for removal of H$_2$S and regeneration.

  • PDF

Synthesis of ZnWO4 Nanopowders by Polymerized complex Method (Polymerized complex법에 의한 ZnWO4 nanopower의 제조)

  • Ryu, Jeong-Ho;Lim, Chang-Sung;Auh, Keun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.321-326
    • /
    • 2002
  • ZnWO$_4$ nano-powders were successfully prepared by polymerized complex method using zinc nitrate and tungstic acid as starting materials. In order to investigate the thermal decomposition and crystallization process, the polymeric precursors were heat-treated at temperatures from 300 to 600$^{\circ}$C for 3 h, and the heat-treated powders were characterized by XRD and FTIR. The surface morphology of the heat-treated powders were observed using SEM and TEM. The crystallite size was measured by X-ray analysis. Crystallization of the ZnWO$_4$ powders were detected at 400$^{\circ}$C and entirely completed at a temperature of 600$^{\circ}$C. The particles heat-treated 400 and 500$^{\circ}$C showed primarily co-mixed morphology with spherical and silkworm-like forms, while the particles heat-treated at 600$^{\circ}$C showed more homogeneous morphology. The average crystalline size were 19.9∼24.nm showing an ordinary tendency to increase with the temperatures from 400 to 600$^{\circ}$C.

Change of Cast Amount and Pollutant Contents before and after the Eating of the Organic Waste and Upland Soil with Earthworms, Eisenia andrei and Amynthas agrestis (유기성폐기물과 밭토양에 대한 붉은줄지렁이와 밭지렁이의 섭식 전후의 분변토 발생량 및 오염물질의 함량 변화)

  • Na, Young-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2015
  • BACKGROUND: Earthworms are essential detritus feeders that play a vital role in the process of decomposition of organic matter and soil metabolism. The complex process of partial breakdown of organic matter and mixing with mucous and gut microbial flora in the form of earthworm cast results in the reduction of the toxicity. This study focused on the change of cast amount and pollutant contents before and after the eating of the organic waste and upland soil with the two species of earthworm. METHODS AND RESULTS: The two species of earthworms were compared to the cast production. In the upland soil material, the daily amount of worm's cast was 1.42 g in E. andrei and 0.40 g in A. agrestis. In the organic waste material, the cast of E. andrei was 0.78~0.83 g and the cast of A. agrestis. have not been collected because all earthworms died after the treatment. The heavy metals treated in the upland soil were evaluated the impact of the worm excretion. With the E. andrei, the cast production was decreased 0.1~0.8 times in zinc, 0.2~0.5 times in copper, and 0.1~0.7 times in cadmium compared to the control treatment according to the levels of concentration. With A. agrestis, the cast amount was decreased 0.3~1.1 times in zinc, 0.2~0.3 times in copper, and 0.1~2.1 times in cadmium, respectively. The changes of pollutant contents before and after the eating of the organic wastes with E. andrei were studied. In the treatment of the Alcohol Fermentation Processing Sludge and the Fruit Juice Processing Sludge, heavy metal content of the cast was increased 0.7~53.3% compared to the sludge materials. PAHs contents were decreased 50.1% in the cast of the Alcohol Fermentation Processing Sludge and 36.6% in the cast of the Fruit Juice Processing Sludge, respectively. CONCLUSION: In conclusion, although the A. agrestis was bigger than E. andrei in size and weight, the cast amount of A. agrestis was small. The two species of earthworm was less excretion with high concentration of heavy metals. While the heavy metals such as zinc, copper, and cadmium were considerably accumulated in the cast, the total compounds, PAHs were fairly decomposed. There results would provide us for restoring contaminated soil and cleaning organic wastes.

Decomposition of Methanol-Water on $M^{II}$/ Cu / ZnO system ($M^{II}$/ Cu / ZnO 계에서의 메탄올-물의 반응)

  • Young-Sook Lee;Chong-Soo Han;Min-Soo Cho;Kae-Soo Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.22-29
    • /
    • 1988
  • The reaction of methanol-water mixture to $CO_2$ and $H_2$ on alkaline earth metal-copper-zinc oxide has been studied in the temperature range of 150 ${\sim}\;300^{\circ}C$. Generally the addition of the alkaline earth metal to Cu/ZnO resulted in an enhancement of selectivity for $CO_2$ formation and a reduction of catalytic activity. Measurable activities were found from 150$^{\circ}C$, 200$^{\circ}C$, and 250$^{\circ}C$ on Mg/Cu/ZnO, Ca/Cu/ZnO, and Ba/Cu/ZnO respectively. However, the highest selectivity for $CO_2$ formation was observed in Ba/Cu/ZnO catalyst at 250$^{\circ}C$. The effect of alkaline earth metal or ZnO on the reactivity was investigated using temperature programmed desorption of $CO_2$ or temperature programmed reduction with $H_2$ over catalysts respectively. It was found that $CO_2$ interacts more strongly in the sequence of MgO < CaO < BaO and ZnO decereases the reduction temperature of CuO. From the results, it was suggested that ZnO activates $H_2$ in the redox process of Cu component and alkaline earth metals adsorbs $CO_2$ in the catalytic process.

  • PDF