• Title/Summary/Keyword: Zinc catalyst

Search Result 82, Processing Time 0.024 seconds

A HISTOPATHOCOGICAL STUDY ON PULP REACTION OF COMPOSITE RESIN "HIPOL" (복합레진 "Hipol"의 치수반응(齒髓反應)에 관(關)한 병리조직학적(病理組織學的) 연구(硏究))

  • Kim, Chul-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.4 no.1
    • /
    • pp.17-21
    • /
    • 1978
  • The histopathological study was made to investigate the pulp reaction of "Hipol". The toxicity against the pulp tissue was compared with the "Zinc-Oxide-Eugenol Cement." A total of 36 cavities of healthy prmanent teeth of the 3 dogs were chosen and filled with the experimental filling materials without base. The teeth were prepared at 3 intervals; a week and two, three weeks as a result of this study. 1) Both "Hipol" and "Adaptic" showed very severe to moderate pulp reactions in the all of the filled teeth. 2) There was little difference between "Hipol" and "Adaptic" in the severity of the pulp reaction. 3) After 3 weeks, the teeth filled with "Hipol" and "Adaptic" showed more or less recovery phenomena. The teeth filled with "Zinc-Oxide-Eugenol Cement" showed marked recovery phenomenon. 4) There was little difference in the histopathological result between "Universal" group and "Catalyst" group.

  • PDF

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

The Effect of Anion Catalysts in Transesterification Reaction (에스테르 교환반응(交渙反應)에서 음(陰)이온 촉매(觸媒)의 영향(影響))

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 1992
  • Transesterification reactions (methyl methacrylate with diethanolamine, ethylene glycol with dimethylphthalate) were kinetically investigated in the presence of zinc compound catalysts at $120{\sim}170^{\circ}C$ The amount of reactants was measured by gas chromatography. and the reaction rates also measured from the amount of reaction products and reactants upon each catalyst. The transesterification reactions were carried out under the first order conditions respect to the concentration of reactants, respectively, The overall reaction order was 2nd. The apparent rate constant (k') was found to obey first kinetics with respect to the concentration of catalyst. It shows that according to an increase in basicity of anionic species the rate constant increase, and that a linear relationship exists between ln k and pKa in transesterification reaction of methyl methacrylate with diethanolamine.

The Effect of Nitrate Catalysts in Transesterification Reaction between Dimethyl Phthalate and Ethylene Glycol (디메틸프탈레이트와 에틸렌글리콜의 에스테르 교환반응에서 질산염 촉매의 영향)

  • Park, Keun-Ho;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 1993
  • Transesterification reaction between dimethyl phthalate and ethylene glycol was kinetically investigated in the presense of various metal nitrate catalysts at $170^{\circ}C$. The reaction rates measured by the amount of distilled methanol from the reaction vessel. The transesterification reaction was carried out under the first order conditions respect to the concentration of dimethyl phthalate and catalyst, respectively. The over all order was 2nd. By Arrhenius plot, the activation energy was calculated as 17.4kcal/mole and 17.2kcal/mole on the transesterification reaction with zinc nitrate and lead nitrate, respectively. Apparent rate constant, k' was appeared linear about concentration of catalyst.

Synthesis of NiZn-Ferrite from Waste Iron Oxide Catalyst (산화철 페촉매를 애용한 NiZn-페라이트의 합성)

  • Hwang, Yeon;Lee, Hyo-Sook;Lee, Woo-Chul
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.20-24
    • /
    • 2001
  • NiZn-ferrite was synthesized usign waste iron oxide catalysts which were produced from styrene monomer process and buried underground as an industrial wastes. The spinel type ferrite was obtained by calcination and sintering of the mixture of finely ground waste catalysts, nickel oxide and zinc oxide powders. The sintered body of Ni/sub 0.5/Zn/sub 0.5/Fe₂O₄ composition at 1230℃ for 5 hours showed the density of 5.38g/㎤, and initial permeability of 59 at 1 kHz. Not only cerium oxide, which existed as a major component in the catalyst, but also unicorporated NiO and ZnO into spinel structure remained as second phases after sintering.

  • PDF

Physical Property Analysis by Table of Orthogonal Arrays of Three-level on the Cotton Fabrics Treated with Formaldehyde and Urea (포름알데히드와 우레아로 처리한 면직물의 3수준 직교배열표에 의한 성능 분석)

  • 이방원;김형우;김찬영;박병기
    • Textile Coloration and Finishing
    • /
    • v.2 no.1
    • /
    • pp.14-20
    • /
    • 1990
  • The cotton fabrics were treated with formaldehyde in the presence of zinc nitrate catalyst and urea. The effects of HCHO concentration, urea concentration, catalyst ratio, cure time and cure temperature on the physical properties of fabrics were studied. Cotton fabric finished with HCHO and urea had the lower tensile strength and tear strength than untreated one. These strength losses resulted from tighter oxymethylene crosslinks. The enhanced wrinkle recovery for fabric treated with formaldehyde in the presence of urea was indicative of the formation of urea-formaldehyde polymer. These experimental conditions were set up according to table of orthogonal arrays.

  • PDF

Effect of Cobalt Loading on the Performance and Stability of Oxygen Reduction and Evolution Reactions in Rechargeable Zinc-air Batteries

  • Sheraz Ahmed;Joongpyo Shim;Gyungse Park
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.87-92
    • /
    • 2024
  • The commercialization of rechargeable metal-air batteries is extremely desirable but designing stable oxygen reduction reaction (ORR) catalysts with non-noble metal still has faced challenges to replace platinum-based catalysts. The nonnoble metal catalysts for ORR were prepared to improve the catalytic performance and stability by the thermal decomposition of ZIF-8 with optimum cobalt loading. The porous carbon was obtained by the calcination of ZIF-8 and different loading amounts of Co nanoparticles were anchored onto porous carbon forming a Co/PC catalyst. Co/PC composite shows a significant increase in the ORR value of current and stability (500 h) due to the good electronic conductive PCN support and optimum cobalt metal loading. The significantly improved catalytic performance is ascribed to the chemical structure, synergistic effects, porous carbon networks, and rich active sites. This method develops a new pathway for a highly active and advantageous catalyst for electrochemical devices.

Multi-scale agglomerates and photocatalytic properties of ZnS nanostructures

  • Man, Min-Tan;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.267.2-267.2
    • /
    • 2016
  • Semiconductor photo-catalysis offers the potential for complete removal of toxic chemicals through its effective and broad potential applications. Various new compounds and materials for chemical catalysts were synthesized in the past few decades. As one of the most important II-VI group semiconductors, zinc sulfide (ZnS) with a wide direct band gap of 3.8 eV has been extensively investigated and used as a catalyst in photochemistry, environmental protection and in optoelectronic devices. In this work, the ZnS films and nanostructures have been successfully prepared by wet chemical method. We show that the agglomerates with four successive scales are always observed in the case of the homogeneous precipitation of zinc sulfide. Hydrodynamics plays a crucial role to determine the size of the largest agglomerates; however, other factors should be invoked to interpret the complete structure. In addition, studies of the photocatalytic properties by exposure to UV light irradiation demonstrated that ZnS nanocrystals (NCs) are good photo-catalysts as a result of the rapid generation of electron-hole pairs by photo-excitation and the highly negative reduction potentials of excited electrons. A combination of their unique features of high surface-to volume ratios, carrier dynamics and rich photo-catalytic suggests that these ZnS NCs will find many interesting applications in semiconductor photo-catalysis, solar cells, environmental remediation, and nano-devices.

  • PDF

Structure Determination of Sucrose by Acetylation and Acid Hydrolysis

  • Min, Hee-Jeong;Lee, Tae-Seong;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.183-192
    • /
    • 2014
  • For the structure determination of D-(+)-sucrose, which consists of ${\alpha}$-D-(+)-glucose and ${\beta}$-D-(+)-fructose, it was acetylated with acetic anhydride and triethyl amine, pyridine, zinc chloride, and sodium acetate as catalysts. The acetylated D-(+)-sucrose was acid-hydrolyzed using sulfuric acid and sodium chloride in methanolic solution. The structures of the reaction products were determined by $^1H$-NMR and $^{13}C$-NMR spectra. The yield of the acetylation indicated the high value in zinc chloride as 70% in zinc chloride catalyst. The acid-hydrolyzed product of the acetylated D-(+)-sucrose, 2,3,4,6,1',3',4',6'-octa-O-acetyl-D-(+)-sucrose, gave 2,3,4,6-tetra-O-acetyl-${\beta}$-D-(+)-glucose and it suggests that the acetylated D-(+)-sucrose was rearranged through the formation of oxonium ion by mutarotation in the 2,3,4,6-tetra-O-acetyl-${\alpha}$-D-(+)-glucose moiety and through the ring opening in the 1',3',4',6'-tetra-O-acetyl-${\beta}$-D-(+)-fructose moiety.

Recent Application Technology Trends Analysis of Zinc Sulfide: Based on Patent Information Analysis (황화아연의 응용 기술 최신 동향 분석: 특허정보분석을 중심으로)

  • Lee, Do-Yeon;Kang, Hyun-Moo;Yoon, Jongman;Lee, Jeong-Gu
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.100-108
    • /
    • 2016
  • Zinc Sulfide (ZnS) is one of the II-VI semiconducting materials, having novel fundamental properties and diverse areas of application such as light-emitting diodes (LEDs), electroluminescence, flat panel displays, infrared windows, catalyst, chemical sensors, biosensors, lasers and biodevices, etc. However, despite the remarkable versatility and prospective potential of ZnS, research and development (R&D) into its applications has not been performed in much detail relative to research into other inorganic semiconductors. In this study, based on global patent information, we analyzed recent technical trends and the current status of R&D into ZnS applications. Furthermore, we provided new technical insight into ZnS applicable fields using in-depth analysis. Especially, this report suggests that ZnS, due to its infrared-transmitting optical property, is a promising material in astronomy and military fields for lenses of infrared systems. The patent information analysis in this report will be utilized in the process of identifying the current positioning of technology and the direction of future R&D.