Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.2.100

Recent Application Technology Trends Analysis of Zinc Sulfide: Based on Patent Information Analysis  

Lee, Do-Yeon (Korea Institute of Science and Technology Information)
Kang, Hyun-Moo (Korea Institute of Science and Technology Information)
Yoon, Jongman (JMON Co., Ltd.)
Lee, Jeong-Gu (Korea Institute of Science and Technology Information)
Publication Information
Korean Journal of Materials Research / v.26, no.2, 2016 , pp. 100-108 More about this Journal
Abstract
Zinc Sulfide (ZnS) is one of the II-VI semiconducting materials, having novel fundamental properties and diverse areas of application such as light-emitting diodes (LEDs), electroluminescence, flat panel displays, infrared windows, catalyst, chemical sensors, biosensors, lasers and biodevices, etc. However, despite the remarkable versatility and prospective potential of ZnS, research and development (R&D) into its applications has not been performed in much detail relative to research into other inorganic semiconductors. In this study, based on global patent information, we analyzed recent technical trends and the current status of R&D into ZnS applications. Furthermore, we provided new technical insight into ZnS applicable fields using in-depth analysis. Especially, this report suggests that ZnS, due to its infrared-transmitting optical property, is a promising material in astronomy and military fields for lenses of infrared systems. The patent information analysis in this report will be utilized in the process of identifying the current positioning of technology and the direction of future R&D.
Keywords
zinc sulfide(ZnS); semiconducting; infrared-transmitting; optical; patent information analysis; technology trend;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Li and Y. Wu, J. Am. Ceram. Soc., 98, 2972 (2015).   DOI
2 W. G. Li, D. J. Li, T. B. Cheng and D. N. Fang, J. Mech., 31, 449 (2015).   DOI
3 Y. J. Yoo, K. S. Chang, S. W. Hong and Y. M. Song, Opt. Quant. Electron., 47, 1503 (2015).   DOI
4 X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Prog. Mater. Sci., 56, 175 (2011).   DOI
5 W. L. Davidson, Phys. Rev., 74, 116 (1948).
6 J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu and J. Shen, Appl. Phy. Lett., 70, 2335 (1997).   DOI
7 S. Okur, N. Uzar, N. Tekguzel, A. Erol and M. Arikan, Physica E, 44, 1103 (2012).   DOI
8 M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen and Z. L. Wang, ACS Nano, 3, 357 (2009).   DOI
9 M. Bredol and J. Merichi, J. Mater. Sci., 33, 471 (1998).   DOI
10 P. Calandra, M. Goffredi and V. T. Liveri, Colloids Surf. A, 9, 160 (1999).
11 M. Bilge, S. Kart, H. H. Kart and T. Cagin, JAMME, 31, 29 (2008).
12 X. Fang, L. Wu and L. Hu, Adv. Mater., 23, 585 (2010).
13 B. Y. Geng, G. Z. Wang, Z. Jiang, T. Xie, S. H. Sun, G. W. Meng and L. D. Zhang, Appl. Phys. Lett., 82, 4791 (2003).   DOI
14 N. Karar, F. Singh and B. R. Mehta, J. Appl. Phys., 95, 656 (2004).   DOI
15 R. Z. Stodilka, J. L. Carson, K. Yu, M. B. Zaman, C. Li and D. Wilkinson, J. Phys. Chem., 113, 2580 (2009).
16 N. Liu, Y. Mu, Y. Chen, H. Sun, S. Han, M. Wang, H. Wang, Y. Li, Q. Xu, P. Huang and Z. Sun, Part. Fibre. Toxicol., 10, 37 (2013).   DOI
17 B. J. Swift and F. Baneyx, PLoS One, 10, e0124916 (2015).   DOI
18 J. P. Borah and K. C. Sarma, Acta. Physica. Polonica A, 114, 713 (2008).   DOI
19 Y. C. Zhu, Y. Bondo and D. F. Xue, Appl. Phys. Lett., 82, 1769 (2003).   DOI
20 P. Biswas, R. Senthil Kumar, P. Ramavath, V. Mahendar, G. V. N. Rao, U. S. Hareesh and R. Johnson, J. Alloy. Comp., 496, 273 (2010).   DOI
21 R. Zamiri, D. M. Tobaldi, H. A. Ahangar, A. Rebelo, M. P. Seabra, M. S. Belsleyc and J. M. Ferreira, RSC Adv., 4, 35383 (2014).   DOI