• Title/Summary/Keyword: Zigzag model

Search Result 90, Processing Time 0.021 seconds

Prediction of a research vessel manoeuvring using numerical PMM and free running tests

  • Tiwari, Kunal;Hariharan, K.;Rameesha, T.V.;Krishnankutty, P.
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.333-357
    • /
    • 2020
  • International Maritime Organisation (IMO) regulations insist on reduced emission of CO2, noxious and other environmentally dangerous gases from ship, which are usually let out while burning fossil fuel for running its propulsive machinery. Contrallability of ship during sailing has a direct implication on its course keeping and changing ability, and tries to have an optimised routing. Bad coursekeeping ability of a ship may lead to frequent use of rudder and resulting changes in the ship's drift angle. Consequently, it increases vessels resistance and also may lead to longer path for its journey due to zigzag movements. These adverse effects on the ship journey obviously lead to the increase in fuel consumption and higher emission. Hence, IMO has made it mandatory to evaluate the manoeuvring qualities of a ship at the designed stage itself. In this paper a numerical horizontal planar motion mechanism is simulated in CFD environment and from the force history, the hydrodynamic derivatives appearing in the manoeuvring equation of motion of a ship are estimated. These derivatives along with propeller thrust and rudder effects are used to simulate different standard manoeuvres of the vessel and check its parameters against the IMO requirements. The present study also simulates these manoeuvres by using numerical free running model for the same ship. The results obtained from both these studies are presented and discussed here.

An Experimental Study of the Submerged Depth Effect on the Manoeuvrability in a Horizontal Plane of an Underwater Vehicle (수중운동체의 잠수심도에 따른 수평면내 조종성능 변화에 대한 실험적 연구)

  • Seol, Dong-Myung;Rhee, Key-Pyo;Yeo, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.551-558
    • /
    • 2005
  • In this paper, horizontal manoeuvrability of an underwater vehicle near free surface was investigated. Planar Motion Mechanism(PMM) tests were performed at the shallow depth within 4.5 times of vehicle's diameter. Hydrodynamic coefficients related to the horizontal movement were estimated from the measured data using Least SQuare(LS) method and analyzed at each submerged depth. Furthermore, horizontal dynamic stability, trajectory of turning and zigzag test were investigated for the various depths. As underwater vehicle is positioned nearer to the free surface, forces increase and moment decreases. Tested model was found to be stable only at the depth 0.5 times of vehicle's diameter.

Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT

  • Semmah, Abdelwahed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.89-98
    • /
    • 2019
  • In this work, the thermal buckling characteristics of zigzag single-walled boron nitride (SWBNNT) embedded in a one-parameter elastic medium modeled as Winkler-type foundation are investigated using a nonlocal first-order shear deformation theory (NFSDT). This model can take into account the small scale effect as well as the transverse shear deformation effects of nanotubes. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. Further the effect of nonlocal parameter, Winkler elastic foundation modulus, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia on the critical buckling temperature are being investigated and discussed. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of boron nitride nanotubes.

Design and Lithographic Fabrication of Elliptical Zone Plate Array with High Fill Factor

  • Anh, Nguyen Nu Hoang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • An elliptical zone plate (EZP) array is important in off-axis optical systems because it provides two advantages. First, the residual beam and the main source are not focused in the same direction and second, the light from the observation plane is not reflected back towards the beam source. However, the fill factor of the previous EZP array was about 76% which was a little low. Hence, this EZP array could not collect the maximum amount of illumination light, which affected the overall optical performance of the lens array. In this study, we propose a new EZP array design with a 97.5% fill factor used in off-axis imaging system for enhancement of brightness and contrast. Then, direct laser lithography was used to fabricate the high fill factor EZP array by moving the XY linear stage of the system in a zigzag motion. The imaging properties of the proposed EZP array were experimentally verified at the focal plane and compared with the previous model.

Finite element based free vibration analysis of sandwich FGM plates under hygro-thermal conditions using zigzag theory

  • Aman Garg;Neeraj Kumar Shukla;M.Ramkumar Raja;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.547-570
    • /
    • 2023
  • In the present work, a comparative study has been carried out between power, exponential, and sigmoidal sandwich FGM plates for free vibration conditions under hygro-thermal conditions. Rules of mixture is used to determine effective material properties across the thickness for power-law and sigmoid sandwich FGM plates. Exponential law is used to plot effective material properties for exponentially graded sandwich FGM plates. Temperature and moisture dependent material properties were used during the analysis. Free vibration analysis is carried out using recently proposed finite element based HOZT. Present formulation satisfies interlayer transverse stress continuity conditions at interfaces and transverse shear stress-free conditions at the plate's top and bottom surfaces. The present model is free from any penalty or post-processing requirements. Several new results are reported in the present work, especially for unsymmetric sandwich FGM plates and exponential and sigmoidal sandwich FGM plates.

Rapid Fabrication of Large-Sized Solid Shape using 3D Scanner and Variable Lamination Manufacturing : Case Study of Mount Rushmore Memorial (삼차원 스캐너와 가변 적층 쾌속조형공정을 이용한 대형 입체 형상의 쾌속 제작 : 러쉬모어산 기념물 제작 사례)

  • 이상호;김효찬;송민섭;박승교;양동열
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1958-1967
    • /
    • 2004
  • This paper describes the method to rapidly fabricate the large-sized physical model with the envelope model size of more than 600 mm${\times}$ 600 mm${\times}$ 600 mm using two type semi-automatic VLM-ST processes in connection with the reverse engineering technology. The fabrication procedure of the large-sized solid shape is as follows: (1) Generation of STL data from 3D scan data using 3D scanner, (2) generation of shell-type STL data by Boolean operation, (3) division of shell-type STL data into several pieces by solid splitting, (4) generation of USL data for each piece with VLM-Slicer, (5) fabrication of each piece by cutting and stacking according to USL data using VLM-ST apparatus, (6) completion of a shell-type prototype by zigzag stacking and assembly for each piece, (7) completion of a 3D solid shape by foam backing, (8) surface finish of a completed 3D solid shape by coating and sanding. In order to examine the applicability of the proposed method, the miniature of the Mount Rushmore Memorial has been fabricated. The envelope model size of the miniature of the Mount Rushmore Memorial is 1,453 mm${\times}$ 760 mm${\times}$ 853 mm in size. From the result of the fabricated miniature of the Mount Rushmore Memorial, it has been shown that the method to fabricate the large object using two type semi-automatic VLM-ST processes in connection with the reverse engineering technology are very fast and efficient.

Development of Intravascular Micro Active Endoscope(II) -System Design, Fabrication and In-vitro Evaluation- (혈관 삽입용 초소형 작동형 내시경의 개발(II) - 시스템 설계, 제작 및 체외 성능 분석 -)

  • Chang, Jun-Keun;Chung, Seok;Lee, Yong-Ku
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.278-286
    • /
    • 1999
  • To predict the behavior of the intravascular micro active endoscope in the real human vascular system, a human mock circulation system was developed. The intravascular micro active endoscope which consists of micro active bending catheter and micro drug infusion catheter was driven in the velocity, Re number and temperature controlled flow. The three SMA (Shape Memory Alloy) zigzag type spring in the micro active bending catheter was heated by the electric current generated by PWM controller, and the shape memory effect made the actuator bend to any direction. The micro drug infusion catheter was driven through the inner hole of the micro active bending catheter. A mock circulation system is shaped from Ascending Arota to Femoral artery according to a human data (the data contains many vascular sizes and hydrographs of many control points). We developed a vascular model with glass and silicone tubes, and set the flow system with circulation parts, flow settling parts, and lots of valves. The heater and heat-controller was added to the How system to centre! the temperature of the How at 36.5$^{\circ}C$. The result showed that the developed intravascular micro active endoscope could be induced to any point in the vascular model.

A Study on the Manoeuvrability of 1/42.0 Scaled KCS (1/42.0 KCS 모형선의 조종성능에 관한 연구)

  • Yun, Kunhang;Kim, Dong Jin;Yeon, SeongMo;Kim, Yoo-Chul;Kim, Yeon Gyu;Yang, Kyung-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.262-270
    • /
    • 2022
  • The emergence of new concept ships, such as autonomous ships, has drawn much attention on the manoeuvrability of ships because of the safe navigation and operation of ships. Although the manoeuvrability of KRISO Container Ship(KCS) has been frequently reported, there have been few documents of representative manoeuvre cases conducted in various methods by one institute. This paper presents the manoeuvrability of the ship in 1/42.0 model scale by 3 methods: free running model tests, horizontal planar motion mechanism tests, and computational fluid dynamics analysis. KRISO reports KCS manoeuvre data: 35° turning circle tests and 20/20(10/10) zigzag manoeuvring tests. In addition, a simple formula for integrating and comparing manoeuvre indices, Manoeuvrability Comparing Simple Index(MCSI), is proposed.

Evaluation of Maneuverability of Small Fishing Vessels Based on CFD Simulation under Standard Loading Condition (CFD 시뮬레이션 기반 소형 어선의 표준재화상태에 따른 조종성능 평가)

  • Sun woo Lee;Sang hyun Kim;Hye woo Kim;Hyung seok Yoon;Chang woo Song;Joo hyung Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.348-357
    • /
    • 2024
  • Maneuvering performance is crucial for fishing vessels, especially under operational conditions that involve frequent course changes and weight variations due to catch. Small vessel accidents account for approximately 60% of maritime incidents as of 2022, mainly attributed to collisions and stranding accidents due to insufficient maneuvering performance. Especially, accidents that occur on small vessels less than 10 tons account for about 65% of all accidents. The absence of international standards presents challenges in accurately evaluating the maneuvering performance of small vessels. In this study, a 4.99-ton small fishing vessel was selected as the target, and a 3d-cad model was created. The commercial numerical analysis program STAR-CCM+ was employed to establish a simulation environment for the vessel's maneuvring motion. Based on this standard loading conditions and weight distribution were considered, 10° / 10°, 20° / 20° zigzag tests and 35° turning test were conducted. The results revealed a tendency for decreased yaw and course-keeping performance and improved turning performance as the hull weight increased. However, in partial arrival and full load departure condition, the manoeuvering performance were relatively poor. Based on this, the need for evaluation of maneuvering and standardized criteria of maneuvering performance for safe navigation of small vessels is presented. Furthermore, it is expected that the evaluation results of maneuvering performance in this study can serve as fundamental data for establishing criteria for evaluating the maneuvering performance of small vessels.

Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • In this paper, a new method based on the Sander theory is developed for SWCNTs to predict the vibrational behavior of length and ratio of thickness-to-radius according to various end conditions. The motion equation for this system is developed using Rayleigh-Ritz's method. The proposed model shows the vibration frequencies of armchair (5, 5), (7, 7), (9, 9), zigzag (12, 0), (14, 0), (19, 0) and chiral (8, 3), (10, 2), (14, 5) under different support conditions namely; SS-SS, C-F, C-C, and C-SS. The solutions of frequency equations have been given for different boundary condition, which have been given in several graphs. Several parameters of nanotubes with characteristic frequencies are given and vary continuously in length and ratio of thickness-to-radius. It has been illustrated that an enhancing the length of SWCNTs results in decreasing of the frequency range. It was demonstrated by increasing of the height-to-radius ratio of CNTs, the fundamental natural frequency would increase. Moreover, effects of length and ratio of height-to-radius with different boundary conditions have been investigated in detail. It was found that the fundamental frequencies of C-F are always lower than that of other conditions, respectively. In addition, the existence of boundary conditions has a significant impact on the vibration of SWCNTs. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.