• 제목/요약/키워드: Zeta Potential

검색결과 609건 처리시간 0.028초

전기분해(電氣分解)시 알루미늄 극판(極板)에서 발생(發生)한 미세기포(微細氣泡)의 제타전위(電位) 측정(測定) (Zeta Potential Measurement of Micro Bubbles Generated by Electrolysis)

  • 김원태;한무영;이성우;한이선
    • 상하수도학회지
    • /
    • 제14권4호
    • /
    • pp.343-349
    • /
    • 2000
  • Techniques such as dissolved air flotation and electroflotation, which utilize micro bubbles, are increasingly used for water and wastewater treatment. Most studies have concentrated on particle characteristics. Pretreatments that manipulate particle size and zeta potential were considered important. A recent study, which modeled the collision mechanism between micro bubbles and particles in dissolved air flotation, suggested bubble characteristics should also be important. Hydrogen micro bubbles were generated electrolytically and their zeta potentials measured under various conditions using a novel electrophoresis method. Effects of several parameters were investigated. Bubble zeta potentials were found to be pH dependent, and to have a negative value around neutral pH, becoming zero or positive at lower pH. The pH at zero zeta potential was 5.0 under study conditions. Using artificial solution and tap water, at fixed pH, bubble zeta potentials varied with solution composition. Zeta potentia]s of bubbles were affected by the types of cations and anions in solution but not by the voltage applied. These findings will help improve efficiencies of particle removal processes that utilize micro bubbles. As bubble zeta potential varies with solution composition, it needs to be measured for each composition to understand those effects, which increase removal efficiency.

  • PDF

수중의 마그네슘과 알루미늄 이온이 기포의 제타전위에 미치는 영향 (The Effect of Magnesium and Aluminium Ions on Zeta Potential of Bubbles)

  • 한무영;안현주;신민석
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.573-579
    • /
    • 2004
  • Electroflotation, which is used as an alternative to sedimentation, is a separation treatment process that uses small bubbles to remove low-density particulates. Making allowances for recent collision efficiency diagram based on trajectory analysis, it is necessary to tailor zeta potential of bubbles that collide with negatively charged particles. In this paper, the study was performed to investigate the effects of magnesium and aluminium ions on zeta potential of bubbles. And, it was studied to find out factors which could affect the positively charged bubbles. Consequently, zeta potential of bubbles increased both with higher concentration of metal ions and in the acidic pH value. And, a probable principle that explained the procedure of charge reversal could be a combined mechanism with both specific adsorption of hydroxylated species and laying down of hydroxide precipitate. It also depended on the metal ion concentration in the solution to display its capacity to control the bubble surface.

Tricalcium Silicate의 초기수화반응(III) (Early Hydration of Tricalcium Silicate(III))

  • 오희갑;최상흘
    • 한국세라믹학회지
    • /
    • 제24권4호
    • /
    • pp.385-391
    • /
    • 1987
  • Zeta potential according to the hydration time was studied during the early hydration of C3S with and without CO2 atmosphere. Zeta potential was low as a level of 20mV at the first and second exothermic peaks of heat evolution, but it was rapidly increased up to a level of 300mV. In the CO2 atmosphere, zeta potential was level of 60mV at 10 minutes hydration and it's value became a low gradually according to the hydration time. Zeta potential was also proportioned to the Ca2+ concentration in the liquid phase, i.e., there was positive correlation between zeta potential and Ca2+ concentration. The existence of silicate layer was not found out on the hydrated C3S in the CO2 atmosphere by SEM-EDAX.

  • PDF

납으로 오염된 카올리나이트의 양이온교환능력 및 계면동전위 특성 (Cation Exchange Capacity and Zeta Potential Characteristics of Kaolinite Contaminated with Lead)

  • 장경수;강병희
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.38-43
    • /
    • 2002
  • A series of tests were performed to investigate the effects of pH and contamination level on cation exchange capacity and zeta potential in kaolinite loaded with lead. Test results show that cation exchange capacity of kaolinite is found to be in the range from 4 to 20meq/100g and it increased with increasing pH up to the converged number about 20meq/100g over pH 8. And then CEC has a tendency to reduce and converge to zero with increasing the concentration of Pb in the kaolinite surface. Moreover, zeta potential of kaolinite contaminated with lead is found to be in the range from -10 to 5mV, and zero point of charge is measured at about pH 3.5. Zeta potential of kaolinite contaminated with lead decreases with increasing pH values and decreasing Pb concentration of kaolinite.

  • PDF

CMP 가공된 사파이어웨이퍼의 웨이퍼내 표면전위에 관한 연구 (A Study on the Zeta-potential of CMP processed Sapphire Wafers)

  • 황성원;신귀수;김근주
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.46-52
    • /
    • 2005
  • The sapphire wafer was polished by the implementation of the surface machining technology based on nano-tribology, The removal process has been performed by grinding, lapping and chemical-mechanical polishing. For the chemical mechanical polishing process, the chemical reaction between the slurry and sapphire wafer was investigated in terms of the change of Zeta-potential between two materials. The Zeta-potential was -4.98 mV without the slurry in deionized water and was -37.05 mV for the slurry solution. By including the slurry into the deionized water the Zeta-potential -29.73 mV, indicating that the surface atoms of sapphire become more repulsive to be easy to separate. The average roughness of the polished surface of sapphire wafer was ranged to 1∼4$\AA$.

적조생물의 구제 -1. IOSP에 의한 적조생물의 응집제거- (Removal of Red Tide Organisms -1. flocculation of Red Tide Organisms by Using IOSP-)

  • 김성재;조규대
    • 한국수산과학회지
    • /
    • 제33권5호
    • /
    • pp.448-454
    • /
    • 2000
  • IOSP를 이용하여 적조생물입자에 대한 응집실험을 한 결과는 다음과 같다. 본 실험에 사용한 IOSP의 평균 지름은 $11.6{\mu}m$이고, 약$ 77{\%}$의 입자가 $5.0{\~}20.0{\mu}$의 범위에 속하며 변동계수는 $60.1{\%}$이었다. IOSP의 금속성분을 분석한 결과는 $98{\%}$가 칼슘으로서 생석회(CaO)와 같은 성분이었다. IOSP의 전자현미경 사진을 분석한 결과 표면이 매끈한 부정형의 입자로 되어 있었다. IOSP에 해수를 첨가하면 해수중의 $Mg^(+2)$ 이온과 급속하게 반응하여 입자의 표면 주위에 점질성의 $Mg(OH)_2$ 흡수층 (absorption layer)을 형성하여 응집 침전하고 해수의 pH를 10.0 정도까지 상승시켰다. IOSP는 $pH=6.2{\~}12.7$에서 $11.1{\~}50.1 mV$로서 IOSP의 입자가 완전히 용해될 때까지 positive zeta potential을 나타낸 반면 OSP는 pH=9.2, 11.9에서 각각 -42.5, -56.9mV로서 negative zeta potential을 나타내었다. $pNa=2.0{\~}4.0 (10^(-4){\~}10^(-2)M Na^+)$에서 IOSP, OSP의 zeta potential은 거의 일정한 값을 나타내었으나 $pNa=0.0 (1 M Na^+)$에서는 IOSP의 EDL이 매우 크게 압축되어 zeta potential은 거의 0.0mV를 나타내었고 OSP는 -25.4mV의 여전히 높은 negative zeta potential을 나타내었다. IOSP는 $Mg^(+2)$ 이온의 농도가 증가함에 따라 positive zeta potential이 증가하다가 $pMg=3.0 (10^(-3)M Mg^(+2))$에서 감소하는 결과를 나타내었다. 해수 중에서 IOSP는 4.8mV의 positive zeta potential을 나타내었고, OSP와 RTO는 각각 -30.7mV, -9.2mV의 negative zeta potential을 나타내었다. 해수중에서 IOSP의 $Mg(OH)_2$ 흡수층과 적조생물입자 사이에는 positive-negative EDL 반응이 일어나서 이들 둘 사이에는 항상 전기동력학적 인력이 작용하고, 동시에 $Mg(OH)_2$ 흡수층에 의한 전하중화로 인하여 입자 상호간의 응집반응은 극단적 인력이 작용하는 primary minimum에서 일어나고, DLVO 이론에 따라 응집반응은 비가역적아며 매우 신속하게 일어났다. 적조생물입자의 응집제거 효율은 IOSP의 농도 50mg/l까지 급격한 증가를 보이다가 IOSP의 농도가 계속 증가함에 따라서 점점 완만한 증가를 나타내었다. 즉 IOSP의 농도가 증가함에 따라서 지수함수적으로 증가하였다 ($Y=53.81{\times}X^(0.1); R^2=0.9868$).응집 침전은 IOSP 400mg/l 이상에서 거의 완전히 일어났다. IOSP $100mg/l$을 사용하고 G-value를 $1, 6, 29, 139 sec^(-1)$로 단계적으로 증가시키면서 응집 실험을 한 결과 적조생물입자의 응집제거 효율이 각각 $70.5, 70.5, 81.7, 85.3{\%}$로 증가하였다. 이는 응집 반응에서 입자간 충분한 충돌이 일어날 수 있도록 교반하는 것이 매우 중요함을 나타내 주는 것이다.

  • PDF

현탁액과 전해질의 농도가 제타전위에 미치는 영향 (Effect of the Concentration of Suspension and Electrolyte on Zeta Potential)

  • 정상진;이승인;임형미
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.293-300
    • /
    • 2003
  • 알루미나 분말과 전해질의 농도가 제타전위 및 등전점에 미치는 영향에 대하여 고찰하였다. 0.1~l $\mu\textrm{m}$의 입도 범위를 지닌 알루미나 분말시료와 NH$_4$NO$_3$를 사용하여 실험을 수행하였으며, 전기영동법을 이용하여 제타전위를 측정하였다. 현탁액 내의 시료량이 증가할수록 제타전위와 등전점은 큰 값을 나타내었으며, 현탁액의 농도가 0.0l wt%일 때 제타전위 측정에 가장 적합한 것으로 나타났다. 또한 전해질 농도가 증가할 경우, 제타전위의 값은 다소 증가하는 경향을 보였으나 큰 변화는 없었고, 등전점 값은 오히려 조금 감소하였다. 제타전위 측정에 가장 적합한 전해질 농도는 10 mM인 것으로 나타났으며, 전해질의 종류에 따라서 제타전위와 등전점의 값이 조금 변하는 경향이 있으나 큰 차이를 발생시키지는 않는 것으로 확인되었다.

Polyester직물에의 Hematite입자의 부착과 제거에 관한 계면전기적 고찰(제1보) -기질과 입자간의 상호작용에너지- (Interfacial Electrical Studies on Adhesion of Hematite Particle to Polyester Fabric and its Removal from the Fabric(Part I) -The interaction energy between particle and fabric-)

  • 강인숙;김성련
    • 한국의류학회지
    • /
    • 제17권3호
    • /
    • pp.380-390
    • /
    • 1993
  • Effect of interfacial electrical conditions on adhesion of ${\alpha}-Fe_2O_3$ particles to PET fabric and the removal of ${\alpha}-Fe_2O_3$ particles from PET fabric, were investigated as functions of pH, electrolyte and ionic strength. The ${\zeta}$ potential of PET fiber and ${\alpha}-Fe_2O_3$ particles in the electrolyte solution were measured by streaming potential and microelectrophoresis methods respectively. The potential energy of interaction between ${\alpha}-Fe_2O_3$ particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased with pH, and then decreased certain pH and isoelectric points of ${\alpha}-Fe_2O_3$ particles and PET fiber were pH 6.5 and pH 3.5, respectively. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber affected by electrolytes, were relatively high with polyanion electrolytes in solutions and were low with neutral salts. However, at surfactant solution, ${\zeta}$ potential was levelled off. The influence of the ionic strength on the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle was small but the negative ${\zeta}$ potential of PET fiber increased with the ionic strength. In the presence of anionic surfactant, the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased regardless of solution conditions. The interaction energy between ${\alpha}-Fe_2O_3$ particle and PET fabric increased with pH. The interaction energy was relatively high with polyanion electrolytes in solution, and the influence of ionic strength on the interaction energy was small, and the effective thickness of electrical double layer increased with decreasing the ionic strength.

  • PDF

Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock

  • Wang, Dong;Kang, Tianhe;Han, Wenmei;Liu, Zhiping;Chai, Zhaoyun
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.191-202
    • /
    • 2010
  • The porosity (including the specific surface area and pore volume-diameter distribution) of montmorillonitic soft rock (MSR) was studied experimentally with an electrochemical treatment, based on which the change in porosity was further analyzed from the perspective of its electrokinetic potential (${\zeta}$ potential) and the isoelectric point of the electric double layer on the surface of the soft rock particles. The variation between the ${\zeta}$ potential and porosity was summarized, and used to demonstrate that the properties of softening, degradation in water, swelling, and disintegration of MSR can be modified by electrochemical treatment. The following conclusions were drawn. The specific surface area and total pore volume decreased, whereas the average pore diameter increased after electrochemical modification. The reduction in the specific surface area indicates a reduction in the dispersibility and swelling-shrinking of the clay minerals. After modification, the ${\zeta}$ potential of the soft rock was positive in the anodic zone, there was no isoelectric point, and the rock had lost its properties of softening, degradation in water, swelling, and disintegration. The ${\zeta}$ potential increased in the intermediate and cathodic zones, the isoelectric point was reduced or unchanged, and the rock properties are reduced. When the ${\zeta}$ potential is increased, the specific surface area and the total pore volume were reduced according to the negative exponent law, and the average pore diameter increased according to the exponent law.

고분자전해질 multilayering 나노기법을 도입한 펄프섬유의 전기화학적 특성에 관한 기초 연구 (Basic Study on Electrochemical Properties of Multilayered Pulp Fibers with Polyelectrolytes)

  • 윤혜정;진성민;류재호;권현승
    • 펄프종이기술
    • /
    • 제39권4호
    • /
    • pp.53-60
    • /
    • 2007
  • LbL multilayering technology introduced by Decher is a nano technique that a substrate surface is layered by the successive deposition of polyelectrolytes with positive and negative charge. We investigated the electrochemical properties of LbL multilayered pulp fibers with poly-DADMAC and PSS. Three types of pulp-Hw-BKP, BCTMP and KOCC- were treated with polyelectrolytes. Zeta potentials of multilayered fibers ranged from +30 mV to +40 mV, depending on the intial zeta potential of pulp fibers and fines content. All kinds of pulp which were examined in this study, however, showed a similar zeta potential of -35 mV after layering with PSS. To obtain pulp fiber with a uniform and stable zeta potential, BCTMP and KOCC pulp fibers should be multilayered above 5 times. The addition level of polyelectrolytes had little influence on the zeta potential of pulp fibers.