• 제목/요약/키워드: Zero-skin friction

검색결과 14건 처리시간 0.022초

큰에디모사법을 이용한 최적 디퓨져내의 난류유동 해석 (Large Eddy Simulation of Turbulent Flow in an Optimal Diffuser)

  • 임석현;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.811-814
    • /
    • 2002
  • Using a mathematical theory, we show that the optimality condition of a turbulent diffuser with maximum pressure recovery at the exit is zero shear stress along the wall. The optimal diffuser shape is designed through iterative procedures by using the $k-{\varepsilon}-{\nu}^{2}-f$ turbulence model for flow simulation. The Reynolds number based on the bulk mean velocity and the channel height at the diffuser entrance is 18,000. We also perform large eddy simulation to validate the shape design results and investigate the flow characteristics near the zero-skin friction wall. Results from large eddy simulation show that the skin friction is slightly higher than zero but is still very small as compared to that of the flat plate boundary layer flow Although the time-averaged wall shear stress is slightly above zero along the diffuser wall, instantaneous flow reversals occur intermittently. The streamwise mein velocity shows an asymptotic behavior of the half-power-law near the wall where the skin friction is close to zero.

  • PDF

현장타설말뚝의 잔류응력 분포에 관한 연구 (A Study on the Distribution of Residual Stress for Drilled Shaft)

  • 김원철;황영철;안창윤
    • 한국지반환경공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.45-51
    • /
    • 2005
  • 말뚝을 설계함에 있어 극한지지력을 산정하는 것만으로는 말뚝의 장기 거동에 있어서의 하중분포를 고려할 수 없으므로 재하시험시 변형률계나 응력계를 사용하여 말뚝의 하중 재하에 따른 주면저항(the shaft resistance)의 분포를 측정하고 있다. 그러나 대부분의 재하시험시 하중이 '0'일 때를 'zero time'으로 하여 계측기의 값을 읽는 'zero reading'을 가정함으로써 현장타설말뚝이나 항타말뚝의 시공시 발생된 잔류응력(the residual stress 또는 the residual load)을 무시하고 있다. 이러한 'zero reading'의 가정은 말뚝 시공시 발생하는 말뚝 하방향으로의 부주면마찰력인 잔류응력을 고려하지 않으므로 실제 말뚝주면의 하중분포와는 다른 결과를 보이게 된다. 본 연구에서는 현장에 시험시공된 현장타설말뚝에 대하여 정재하시험을 수행하였고, 말뚝 주면의 하중분포 측정시 변형률계를 사용하여 콘크리트 타설 직후부터 계측을 실시함으로써 말뚝 시공에 따른 잔류응력을 측정하였다. 그 결과, 잔류응력이 고려된 경우는 초기에 부의 응력상태를 보이나 하중이 재하됨에 따라 부주면마찰력이 극복되면서 양의 주면마찰력으로 전환됨을 알 수 있었으나, 'zero reading'의 경우는 양의 주면마찰력 만을 보였다.

  • PDF

A Study on the Helical Flow of Newtonian and Non-Newtonian Fluid

  • Woo, Nam-Sub;Hwang, Young-Kyu;Kim, Young-Ju
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2007
  • This study concerns the characteristics of helical flow in a concentric and eccentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and 0.2% aqueous of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0-500 rpm. The effect of rotation on the skin friction is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and, then, it gradually approach to zero for the turbulent flow regime.

환형관내 회전유동에 관한 연구 (A Study on the Rotating Flow in an Annulus)

  • 김영주;우남섭;황영규
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.153-158
    • /
    • 2003
  • This study concerns the characteristics of helical flow in a concentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and 0.2% aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of 0∼500rpm. The effect of rotation on the skin friction is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and, then, it gradually approach to zero for the turbulent flow regime.

  • PDF

미끄러지는 벨트 장치를 이용한 난류 항력 감소 (Turbulent Drag Reduction Using the Sliding-Belt Device)

  • 최병귀;최해천
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1481-1489
    • /
    • 1999
  • The sliding-belt concept introduced by Bechert et al. (AIAA J., Vol. 34, pp. 1072~1074) is numerically applied to a turbulent boundary layer flow for the skin-friction reduction. The sliding belt is moved by the shear force exerted on the exposed surface of the belt without other dynamic energy input. The boundary condition at the sliding belt is developed from the force balance. Direct numerical simulations are performed for a few cases of belt configuration. In the ideal case where the mechanical losses associated with the belt can be ignored, the belt velocity increases until the integration of the shear stress over the belt surface becomes zero, resulting in zero skin friction on the belt. From practical consideration of losses occurred In the belt device, a few different belt velocities are given to the sliding belt. It is found that the amount of drag reduction is proportional to the belt velocity.

Experimental Study on the Vortex Flow in a Concentric Annulus with a Rotating Inner Cylinder

  • Kim, Young-Ju;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.562-570
    • /
    • 2003
  • This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0~600 rpm. Also, the visualization of vortex flows has been performed to observe the unstable waves. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and. then, it gradually approach to zero for the turbulent flow regime. Consequently, the critical (bulk flow) Reynolds number Re$\_$c/ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

실내모형실험을 통한 지반 융기시 사질토 지반에 매설된 지반 변형 대응형 말뚝의 주면 마찰 저항 분석 (Analysis of the Shaft Resistance of a Pile Embedded in Sand Responding to Ground Deformation by Model Tests of Simulated Ground Heaving)

  • 신세희;이기철
    • 한국지반공학회논문집
    • /
    • 제39권1호
    • /
    • pp.5-14
    • /
    • 2023
  • 말뚝이 근입된 지반의 융기는 말뚝에 추가적인 상향 주면 마찰력을 발생시켜 말뚝의 안정성을 저해할 수 있다. 본 연구에서는 말뚝의 일부에 지반 변형에 능동적으로 대응 가능한 부재가 삽입되어 말뚝에 작용하는 상향 주면 마찰력을 감소시킬 수 있는 새로운 말뚝 기초 양식을 제안하였다. 제안된 말뚝의 실효성을 검증하기 위하여 지반 변형 대응 부재로서 유압 실린더가 적용된 말뚝을 설계 및 제작하였다. 일반 말뚝과 제안된 말뚝을 대상으로 지반 융기 모사 실험을 수행하여 선단 하중, 주면 마찰력과 지반 변형 대응 부재의 팽창량에 따른 선단 하중의 변화를 분석하였다. 실험 결과, 매우 적은 양의 실린더 부재의 팽창에도 말뚝에 작용하는 인발 마찰력이 완전히 상쇄되며 이에 따라 선단 하중이 증가하였다. 그러나 실린더 부재의 과도한 팽창은 상향 마찰력의 감소를 넘어 부주면 마찰력을 발생시키므로 지반 팽창량 및 말뚝의 허용 변위를 고려한 적절한 지반 변형 대응 부재의 팽챵량 산정이 필요하다.

Effect of Lecithin on Dermal Safety of Nanoemulsion Prepared from Hydrogenated Lecithin and Silicone Oil

  • Bae, Duck-Hwan;Shin, Jae-Sup;Shin, Gwi-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.821-824
    • /
    • 2009
  • In this study, a hydrogenated lecithin-containing nanoemulsion was prepared from hydrogenated lecithin and silicone oil. Tween-60 and liquid paraffin, widely known emulsifiers, were used as standard substances, and high shear was produced by utilizing a high shear homogenizer and microfluidizer. The properties of the nanoemulsion prepared with hydrogenated lecithin were evaluated by measuring interfacial tension, dynamic interfacial tension, droplet size, zeta-potential, friction force, skin surface hygrometery, and dermal safety. The interfacial tension of lecinol S10/silicone oil was lower than that of lecinol S10/liquid paraffin. The nanoemulsion prepared from hydrogenated lecithin shows lower zeta-potential, skin surface hygrometery, and friction force compared with a general emulsion. The silicone nanoemulsion prepared from hydrogenated lecithin showed a zero value in the patch test and thus exhibits high dermal safety.

역압력 구배가 존재하는 난류 경계층의 발달에 트리핑 구조물이 미치는 영향에 관한 연구 (The effects of tripping structure on the development of turbulent boundary layer subjected to adverse pressure gradient)

  • 임태현;김대성;윤순현
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.36-44
    • /
    • 2001
  • The effects of various tripping structures on turbulent boundary layer subjected to adverse pressure gradient were examined. The profiles are compared to zero pressure gradient and adverse pressure gradient. The increases of tripping structures of height, k are affects almost flow parameter included velocity fluctuation, skin friction coefficient and turbulent boundary thickness.

  • PDF

A Study on the Plane Couette Flow Using Micropolar Fluid Theory

  • Kim, Youn-Jea;Kim, Tae-An
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.491-498
    • /
    • 2004
  • An analysis of the plane Couette flow between two parallel plates of a viscous, incompressible, micropolar fluid is presented. Especially, the effects of non-zero values of the micro-gyration boundary condition coefficient and pressure gradient on the flow fields are studied. Numerical results show that the micro polar parameter was found to have much more of an impact on the flow behaviors. It is also observed that the micro-gyration boundary condition coefficient influenced on the coefficients of skin friction and couple stress due to its different effect on the surface stress.